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ABSTRACT 

 
 As stringent environmental control mandates are introduced and enforced, the traditional 

disposal routes of land application, land-filling, and incineration for processed biosolids 

will come under increasing pressure and may no longer be viable and cost-effective 

disposal outlets for sanitary engineers to capitalize on.   

This Master thesis research investigates the technical viability of incorporating 

dehydrated biosolids and sewage sludge ashes into concrete raw material mixtures to 

produce pre-cast bricks that can be utilized in general-purpose outdoor building of non-

load bearing structures.  Furthermore, the cost-cutting benefits of producing such sludge-

amended bricks are quantified.   

The approach was to experiment with the addition of various sludge quantities to 

concrete mixtures – (making use of both sun-dried biosolids and sewage sludge ashes) - 

and then to evaluate and analyze the corresponding physical properties of the concrete 

mix paste and of the produced concrete bricks – mainly those properties affecting 

structural integrity.  Results showed that there is a general inverse relationship between 

the amount of dried sludge or ashes added and the compressive strength development 

of the cured blocks.  However, the addition of as much as 10% of biosolids’ ashes to the 

raw ingredients of a concrete mix did not affect the general physical properties of 

concrete (i.e. the workability of the concrete mix and the compressive strength, water 

absorption, and density of the cured bricks).   On the other hand, the addition of an equal 

quantity of sun-dried biosolids decreased the compressive strength of the cured concrete 

by about 20% - which can be attributed to the presence of the organic materials in the 

dried biosolids.  Moreover, results showed that there is no significant change in the 

relative strengths of the tested concrete blocks when sludge is used in small quantities 

(i.e. 10% ashes or a combination of 2.5% dried biosolids and 7.5% ashes) as sand 

replacements in the concrete mixture.   

For concrete bricks’ manufacturers that utilize sand as a raw material ingredient in their 

production process, the incorporation of 10% sewage sludge ashes into concrete 

mixtures as a partial replacement for sand can achieve the highest possible monetary 

savings. 
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 ملخص
 

 الخيارات، فإن سلامة البيئة تكفلمع تطور الأطر التشريعية البيئية وتزايد صرامة القوانين التي 

دفن مثل  مياه الصرف الصحيالناجمة عن معالجة حمأة الالتقليدية المستخدمة في التخلص من 

العديد من راضي الزراعية ستواجه تخصيب الأاستخدامها في  وأ)الترميد(،  حرقها وأ، الحمأة

ية الإستمرار في تطبيق استخدام من المجدي اقتصادياً لمهندسي الصحة البيئعد يتحديات وربما لن ال

 .في إدارة التخلص من الحمأةهذه الطرق التقليدية 

كمواد لاستخدام الحمأة المجففة ورماد الحمأة المحروقة  التِقنيةيهدف هذا البحث الى دراسة الجدوى  

والجدران الخفيفة أولية في صناعة الطوب الاسمنتي المراد استخدامه في أعمال البناء الخارجية 

الطوب الاسمنتي في  إنتاجكما تحاول هذه الدراسة حساب التوفير في تكاليف   .للأوزان الغير حاملة

 حال استخدام الحمأة كبديل جزئي عن المواد الأولية التي تدخل في العملية الإنتاجية.

م على تجربة ، اعتمد البحث منهجية تقوالاسمنتي ولدراسة تأثير استخدام الحمأة في صناعة الطوب

إضافة كميات مختلفة من الحمأة المجففة ورماد الحمأة المحروقة الى المواد الأولية لخليط الخرسانة 

ومقارنتها بخواص  متصلدوتقييم وتحليل الخصائص الفيزيائية للخليط الخرساني وللطوب ال

ا بين كمية الحمأة أو وجود علاقة عكسية م نتائج الدراسةأظهرت وقد .  الخرسانة الخالية من الحمأة

وبالرغم من رماد الحمأة المضافة الى خليط المواد الأولية ومقاومة الضغط للخرسانة المتصلدة.  

% )من وزن الاسمنت( في 01رماد الحمأة المحروقة بنسبة تبين انه من الممكن اضافة  ذلك، فقد

قوة تحمل الخرسانة للضغط أو المواد الأولية للخليط الخرساني دون إحداث اي تأثير يُذكر على 

لى الخصائص الفيزيائية الأخرى مثل الكثافة وامتصاص الماء.  أما عند إضافة كمية من الحمأة ع

% )من وزن الإسمنت( الى الخليط الخرساني، فإن 01المجففة بواسطة أشعة الشمس تصل الى 

تها مع باطون من نفس % عند مقارن01قد تنخفض بنسبة  ةل الباطون لقوة الضغط العموديتحم  

ويرجع ذلك الى وجود تركيز عالٍ من المواد العضوية في  - المكونات ولكنه خالٍ من وجود الحمأة

والذي يساهم في انفصال مواد الخرسانة عن بعضها البعض مانعاً تشكيل القوة الحمأة المجففة 

المواد الأولية في تصنيع أما عند استبدال الرمل المستخدم في   بشكل كامل.للباطون والصلابة 

% من رماد الحمأة المحروقة أو بخليط مكون من 01الطوب بكميات صغيرة من الحمأة )إما بكمية 

تشكُّل % من رماد الحمأة(، فلا يوجد تأثير سلبي يُذكر على 5.2% من الحمأة المجففة و 0.2

 يوم من عمر الخرسانة.   01أو  02أو  5الصلابة للباطون بعد 
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لنسبة للجدوى الإقتصادية، فيمكن تحقيق أكبر توفير في تكاليف انتاج الطوب الإسمنتي عند أما با

% من الرمل بـكمية مماثلة من رماد الحمأة المحروقة في خليط المواد الأولية 01استبدال استخدام 

 إحداث أي تأثير سلبي على الخصائص الفيزيائية العامة للباطون الناتج.دون 
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CHAPTER 1 

INTRODUCTION 
 

1.1 The ‘E’ in Sustainable Development 

To address the growing concerns “about the accelerating deterioration of the human 

environment and natural resources and the consequences of that deterioration for 

economic and social development,” the World Commission on Environment and 

Development released Our Common Future in 1987 (often called the Brundtland Report) 

– a report that highlighted sustainable development as the “development that meets 

needs of the present without compromising the ability of future generations to meet their 

own needs” (WCED, 1987). 

In the 24 years since the release of the Brundtland Report, the principle of sustainable 

development has undergone a lot of evolution and has been much elaborated and 

refined to entail three E’s in its definition: environment, economy, and equity.  From the 

environmental perspective, in order to underpin sustainable development, instead of 

generating wastes, systems have to be devised to ensure the prudent use of raw 

materials and natural resources, generating as little waste as possible – i.e. systems for 

the preservation of natural resources and biodiversity that are smart, comprehensive, 

and effective. In our increasingly resource-constrained world, the three R’s of the waste 

hierarchy - reduce, re-use, and recycle were a recurring cornerstone in many sustainable 

development principles.  Recently, the European Waste Framework Directive (WFD) 

expanded the waste hierarchy from a 3-step to a quasi-binding 5-step hierarchy that 

includes recovery and disposal (European Parliament, 2008) so as to introduce a newer 

approach that takes into account the whole life-cycle of resources and materials, and to 

focus on reducing the environmental impacts of waste generation and waste 

management, thereby strengthening the economic value of waste and encouraging 

recovery of waste and the beneficial use of the recovered materials.  

 

1.2 Background on the creation and management of biosolids 

Wastewater treatment and the management of the solids (in the form of sewage 

sludge) that it produces are intricate global issues with growing challenges that must be 

addressed at all levels of stakeholders – wastewater generators, sanitary engineers, 

treatment facility operators, scientists, regulators, as well as the general public.   
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The constituents removed in domestic sewage treatment plants are primarily screenings, 

grit, scum, and sludge – with sludge being by far the largest in volume (Metcalf and 

Eddy, 1991) and perhaps the most complex to process, store, and render to a pre-

disposal form that is suitable and safe for final disposal or re-use.   

To put this into perspective, new research shows that as high as 4,000 man-made 

chemicals (a few are shown in Table 1) that are in common usage may become 

sequestered in wastewater sludge and can enter the environment when these biosolids 

are disposed of on land (Deo & Halden, 2010).  This is because most wastewater 

treatment facilities are designed only to remove nutrients, turbidity, and oxygen-depleting 

human waste, but not the large number of chemicals that are put to residential, 

commercial, and industrial use.  The higher the level of treatment required, the higher 

are the volumes of wastewater solids being created. 

Table 1 | Regulated pollutants in wastewater sludge (Metcalf, Tchobanoglous, & Burton, 1991) 

 Type of disposal or re-use 

Pollutant Land  
application 

Distribution & 
marketing 

Mono-filling Surface  
disposal 

Incineration 

Aldrin      
Arsenic      
Benzene      
Benzo(a)pyrene      
Beryllium      
Bis(2-
ethylhexyl)phthalate 

     
Cadmium      
Chlordane      
Chromium      
Copper      

DDD/DDE/DDT      
Dieldrin      
Dimethyl nitrosamine      
Heptachlor      
Hexachlorobenzene      
Hexacholorobutadiene      
Lead      
Lindane      
Mercury      
Molybdenum      
Nickel      
PCBs      
Selenium      
Toxaphene      
Trichloroethylene      
Total hydrocarbons      
Zinc      
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Table 2 below summarizes the historical evolution of sewage sludge from the year 1500 

until 1991 when the word “biosoldis” was coined.  

Table 2 | The history and evolution of biosolids  

1500 - 1800 1 1972 - 6 
 
Pre- flush toilets and sewer systems era. 
Chinese returned human excreta or “night soil” to 
nearby farmlands. 

Federal Water Pollution Control Acts Amendments 
of 1972 placed restrictions on discharge of 
pollutants to waterways and encouraged land 
application of sewage sludge. 

 

1850 -  2 1972 – 1980 7 

Commercial flush toilets and city sewer systems 
introduced in Western Europe and North America. 
Wastewater is discharged without any treatment. 
Large-scale cropland application of municipal 
wastewater is practiced. 
 

Source control programs initiated. 
Industrial pre-treatment programs initiated. 

1875 -  3 1987 8 
 

“Sewage Farms” are constructed to serve major 
European cities – farms that are irrigated and 
fertilized with raw sewage. 

 
Congress directed EPA to: 

 Identify toxic pollutants that may be 
present in sludge in concentrations that 
may affect the public health and the 
environment. 

 Promulgate regulations that specify 
acceptable management practices and 
numerical concentration limits for these 
pollutants in sludge. 

 

1899 -  4 1991 9 
 

First federal legislation first appeared, aimed at 
controlling water pollution. 

 
The Name Change Task Force of the Water 
Environment Federation formally created the term 
“biosolids.”  Possible name suggestions were 
“humanure,” “bioresidue,” “urban biomass,” 
“geoslime,” “biolife,” “nutri-cake,” “bioslurp,” “bio 
gold,” “recyclite,” “organic residuals” “the end 
product,” “powergro.” 

 

1900 – 1950 5  

 
Thousands of POTWs constructed (activated sludge 
process is developed in 1912-1914). 
Ocean disposal of residual solids is still permitted. 

 

 

(Committee on the Use of Treated Municipal Wastewater Effluents and Sludge in the Production of Crops 
for Human Consumption, 1996) 
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Worldwide, the produced sludge (i.e. solids) is disposed to landfills, used a source of 

energy, further processed and used on land as a fertilizer or soil conditioner, or even 

used as a raw material in the construction industry.  When sludge is properly treated and 

is used on land, it is widely known as “biosolids” in order to distinguish it from other 

sludge – in the public acceptance domain.  Today, many of the chemical pollutants that 

are sequestered in sewage sludge are regulated (Table 1) in the United States. 
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1.3 Current levels of sewage sludge production 

 

Higher income countries that have the largest wastewater service coverage and 

advanced treatment technologies, produce the largest quantities of sewage sludge per 

capita (see Table 3 below).   

Table 3 | Estimated sewage sludge production and populations for selected countries  

Country Annual Sewage Sludge 
Production 

(Dry metric tons) 

Population Annual Sludge 
Production 
(Kg/capita) 

Brazil 372 188,078,000 0.002 
China 2,966,000 1,313,974,000 2.257 
Turkey 580 70,414,000 0.008 
Slovakia 55 5,439,000 0.010 
Hungary 120 9,981,000 0.012 
Japan 2,000,000 127,464,000 15.69 
Canada 550 33,100,000 0.017 
Italy 1,000,000 58,134,000 17.20 
Norway 86.5 4,611,000 0.019 
Czech Republic 200 10,235,000 0.019 
USA 6,514,000 298,444,000 21.83 
Portugal 236.7 10,606,000 0.022 
Germany 2,000,000 82,422,000 24.27 
UK 1,500,000 60,609,000 24.75 
Slovania 57 2,010,000 0.028 
Finland 150 5,231,000 0.029 
Netherlands 1,500,000 16,491,000 90.96 
((UN-Habitat), United Nations Human Settlements Programme, 2008) 

 

Conversely, middle-income countries which have under-developed and less 

comprehensive septage treatment infrastructure produce far less sewage sludge per 

capita on the national level.   

 

In Palestine for example, only 52.1% of households are connected to functional 

wastewater networks.  Moreover, cesspits are still in use by more than 45.5% of 

Palestinian (Palestinian Central Bureau of Statistics, 2009).  This means that, as of the 

year 2009, only half of the Palestinian population were actively contributing to sludge 

production. 

 

Table 4 below shows the estimated future projected biosolids production rates for 

developing countries.  Jordan, for example, will need about 3% of its agricultural land to 

accept biolsolids application at a rate of 5,000 Kg/ha in order to dispose of the biosolids. 
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Table 4 | Predicted future sewage sludge production if developing countries attain levels of 
wastewater service coverage of developed countries  

Country Estimated future sludge 
production 

(Metric tons/yr) 

% of agricultural area required 
to apply country’s future 

sludge at 5 Mg/ha 
Developing Countries   

Brazil 4,069,339 0.31% 
Bulgaria 159,793 0.61% 
Burkina Faso 300,811 0.55% 
Cameroon 375,191 0.82% 
China 28,429,686 1.02% 
Colombia 943,197 0.44% 
Cote D’lvoire 381,988 0.38% 
Ethiopia 1,617,928 0.95% 
Hungary 215,96 0.74% 
Iran 1,486,172 0.62% 
Jordan 127,801 2.53% 
Mali 253,51 0.13% 
Mexico 2,324,823 0.43% 
Mozambique 425,945 0.18% 
Namibia 44,228 0.02% 
Nigeria 2,852,972 0.77% 
Russia 3,091,705 0.29% 
Senegal 259,358 0.63% 
South Africa 956,062 0.19% 
Turkey 1,523,506 0.74% 
Palestine (WB)* 7,028 N/A 
Developed Countries   

Germany 1,783,323 2.1% 
Netherlands 356,816 3.7% 
Japan 2,757,856 11.8% 
United Sates 6,457,264 0.3% 
*Calculated value based on equation 1 below and on a present population of 4,043,218; population growth rate of 2.25%; SRT of 10 

days; temperature of 20 °C; average daily wastewater inflow flow of 5000 m3/d; average influent and effluent substrate 

concentrations of 500 mg/L and 10 mg/L respectively.   ((UN-Habitat), United Nations Human Settlements Programme, 2008) 

The future bio-solids production rate in Palestine in Table 4 was calculated (Appendix 2) 

based on an estimate of observed solids yield data from similar facilities (Figure 1) 

combined with data collected at a major wastewater treatment plant as shown in 

equation below (Asano, 2007): 

 

PX,VSS = Yobs(Q)(So – S)(1 Kg/103 g)  (Eq. 1) 

where 

 

PX,VSS  = net waste activated sludge produced per day, Kg VSS/d 

Yobs  = observed yield, g VSS/g substrate removed 

Q  = influent flow, m3/d 

So  = influent substrate concentration, g/m3 (mg/L) 
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S  = effluent substrate concentration, g/m3 (mg/L) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
Figure 1 | Net solids production versus solids retention time (SRT) and temperature: (a) with 
primary treatment and (b) without primary treatment (Asano, 2007) 

 

1.4 Public acceptance barriers to biosolids recycling 

In many countries the general public has not actively participated in the growing dispute 

on sewage sludge recycling techniques.  In general, however, communities that are 

served by WWTPs are inclined to maintain existing routes for sewage sludge 

disposal/reuse that are both economically viable and safe in terms of health.  In the 

media and public, there are growing and widespread concerns about the traces of 

chemicals and heavy metals, about disease transmission and antibiotic resistance. 

 

At the legislative national level, of all the options for the disposal and recycling of 

biosolids, ministries and environmental agencies are in favor of adopting and further 

developing the use of processed sludge in agriculture, as it is considered to be the best 

economic and environmental option to deal with the increasing quantities of sludge 

produced (European Commission DG Environment, October 2001).   

 

Often the best environmental and most energy-efficient solution for septage sludge 

management is not supported by the public – largely because people prefer that 

anything associated with human excreta be managed in remote areas (the out of sight 

and out of mind thinking approach).  The major public acceptance barrier to sewage 

sludge reuse is often triggered by the widely held perception of sewage sludge as 

malodorous, disease causing or otherwise repulsive.  Pathogenic microbes in biosolids 

are one of the key factors influencing public acceptance of biosolids re-use.  Possible 
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viable pathogens include bacteria, viruses, and parasites.  Pathogen concentrations in 

sewage are directly related to the occurrence of these pathogens in the community 

contributing to the sewage flow. However, regardless of initial levels, pathogens become 

relatively concentrated in biosolids. 

 

Table 5 summarizes a list of historical and potential future disposal outlets for biosolids 

management.  As the table shows, most of the past, current, and future beneficial uses 

of biosolids are in the land reclamation, horticulture, and landscaping domains 

 

Table 5 | Historical and potential future beneficial uses of biosolids  

Land Reclamation 

 Land reclamation of mine-lands (metal 
mines, aggregate/sand/gravel mines, coal 
mines 

 Landfill closures (as a component of topsoil 
in closure activities) 

 Lime stabilized biosolids to mitigate acid 
mine drainage 

 Remediation/bioremediation (e.g. with 
compost of Fe-rich biosolids) for 
urban/suburban contaminated sites. 

 General topsoil manufacturing for other 
uses (in combination with other residuals 
such as paper mill residuals). 

 Restoration and development of water 
features (e.g. wetland 
establishment/enhancement; shoreline 
restoration). 

Horticulture and Landscaping 

 Compost feedstock 
 Potting mixes 
 Fertilizers (e.g. heat-dried pellet fertilizer) 
 Sod production 
 Lawns, parks, sports fields 
 Green roofs 
 Erosion control (e.g. compost berms) 
 Treatment of storm-water flow (compost 

filters, filter socks) 
 Highway re-vegetation 
 Using incineration ash for phosphorous and 

liming value in soil mixes 
 

Forestry 

 Forest fertilization (i.e. in existing stands 
and for reforestation 

 Applications following forest fires 
 Intensive silviculture for fiber crops (e.g. 

hybrid poplar, trench applications, etc) 

Industrial Processes 

 Use in cement kilns 
 Making bricks and other building 

materials 
 Making glass aggregate used in 

pavements 
 Daily or final landfill cover 

Resource Recovery 

 Biosolids as source of minerals and metals 
(e.g. struvite production) 

 Substrate for high value products (e.g. 
proteins) 

Energy Recovery 

 Bio-energy from digestion (in digesters or 
deep bores) 

 Incineration (thermal oxidation or 
thermal conversion) with heat recovery 
and/or electricity generation 

 Gasification, pyrolysis, and other 
developing high-tech energy production 
options 

(Beecher, Hébert, Ham, & Teshima, October, 2007) 
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1.5 Factors influencing current and future biosolids management practices 

 

The disposal and/or re-use of sludge require very careful management which can get 

complicated due to the presence of a wide range of factors influencing the decision-

making process.  Figure 2 below summarizes the numerous factors (such as regulations, 

public perceptions, and economics) that can play a critical role in the management of 

biosolids. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 | Factors affecting disposal/treatment routes for sewage sludge (European Commission 

DG Environment, October 2001) 
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1.6 Research objective 

The main objective of this work was to investigate the technical and market potential of 

producing precast concrete bricks that are amended with stabilized sewage sludge as 

well as with incinerated sewage sludge ashes.  The feasibility of incorporating biosolids 

and biosolids ashes into the manufacturing process of concrete bricks without affecting 

the physical properties of the cured concrete could possibly offer an attractive and cheap 

sludge disposal option.  The research was built on available literature and current 

research results, and also made use of new data that was gathered directly on a lab-

scale level. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Background and introduction 

The effective management and safe disposal of municipal wastewater bio-solids is a 

complex and environmentally sensitive issue facing wastewater treatment engineers, 

environmental practitioners, regulatory authorities, as well as the general public.  

Scientific evidence has shown that municipal sewage sludge may contain a wide variety 

of dangerous pathogens, toxic heavy metals, endocrine disruptor chemicals, 

carcinogens, pharmaceutical drugs, and a host of other recalcitrant micro-pollutants 

(Haynes et al, 2009; Sidhu and Toze, 2009), originating from residential sewers, hospital 

drains, and storm water runoffs.  Uncontrolled and irresponsible disposal of wastewater 

bio-solids can disrupt fragile ecosystem functions, destroy biodiversity-rich habitats, and 

pollute pristine natural resources – thereby causing profound detrimental impacts on 

plants, farm animals, and humans (Spinosa & Veslind, 2001).   

To avoid potential adverse implications, management agencies at multiple regulatory 

levels are implementing established sewage sludge re-use standards based on chemical 

and biological components that are of prime concern.  These standards are dynamic and 

are regularly updated as new contaminants are discovered or as research studies 

provide new scientific evidence about potential risks that were previously thought of as 

being safe. 

Traditionally, sewage sludge is processed and stabilized and then disposed of through 

various channels including but not limited to land-application, land-filling, and incineration 

(Malliou et al, 2007).  Today, such practices are largely regulated and emphasis is 

shifting towards the sustainable management of bio-solids - giving rise to the introduction 

of new and innovative technologies that promote sludge re-use and resource recovery.  

In other words, effective sludge management systems are getting simpler, not more 

complex, and are proceeding in the direction of increasing the degree of idealness as 

shown in equation below (Rantanem & Domb, 2008): 

          
∑        

∑       ∑     
   (Eq. 2) 
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Where the maximum value of ideality is reached when the benefits are high and the 

denominator is almost zero (i.e. the most ideal bio-solids management system is the one 

that achieves maximum benefits with little or no costs and with little or no harm). 

 

 

 

 

 

 

 

 

Figure 3 | Classification of existing, practical, and ideal sewage sludge management systems in 

terms of desired and undesired variables (self-drawn) 

 

2.2 Incineration as a management option 

Incineration is a viable alternative to both land spreading and disposal to landfill for 

sewage sludge.  Following the ban on disposal to the North Sea in 1998, sewage sludge 

incineration was considered as the best practicable environmental option (BPEO) for the 

management of the domestic sewage solids produced in East London (Cheesman & 

Virdi, 2005).  Sewage sludge incineration is considered a high-technology and high-cost 

bio-solids minimization option (Hall, 1999) - as it required a large capital investment in 

infrastructure and requires fuel.  Whilst incineration reduces the sewage sludge’s volume 

by up to 70%, the resultant sewage sludge ash (SSA) is considered to be a toxic waste 

and will incur further expenses for its proper management and safe disposal.  In the 

West Bank, wastewater sewage sludges are transported off-site and are discarded into 

existing general dump sites for domestic waste, where they are liable to be incinerated 

alongside other solid waste materials.  The resulting emissions add to the alchemy of 

harmful gases contributing to climate change and health hazards to residents living 

nearby.  As a matter of fact, a study conducted by the Agency for Toxic Substances and 

Disease Registry concluded that men residing close to a landfill site had elevated risks 
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for prostate, stomach, liver, and lungs cancer, while women had elevated risks of cervix 

uteri cancer (Goldberg, Seimiatyck, DeWar, Desy, & Riberdy, 1999). 

On the other hand, incineration of sewage sludge has become very common in the 

Netherlands and in Switzerland and is gaining increase acceptance elsewhere in the 

European Union, mostly driven by the public dislike of land filling and by the growing 

concerns about potential hazards caused by land application.  The megalopolis of Hong 

Kong, which has very little agricultural land, is turning away from landfills towards 

incineration. 

Table 6 | Percentage of wastewater sludge incinerated by country 

Country Percentage of wastewater sludge incinerated 
Japan 70% 
Netherlands 58% 
Germany 34% 
Canada 33% 
USA 15% 

 

2.3 Land application as a management option 

So far, land application has been the preferred and dominant paradigm for the recycling 

of nutrient-rich and organic-rich bio-solids – as it enhances soil properties and stimulates 

vegetative growth.  Bio-solids contain the same soil-enriching, plant-boosting elements 

found in expensive chemical fertilizers – namely nitrogen, phosphorous, and potassium.  

Table 7 and Figure 4 below show that wastewater bio-solids can contain up to 65% and 

23% of the nitrogen and phosphorous that are present in typical commercial fertilizers - 

thereby reducing the need for chemical fertilizers and thus offering reasonable cost 

advantages to farmers who choose to use this valuable resource.   

Table 7 | Nutrient levels in commercial fertilizers compared to levels in bio-solids  

 Nutrients (%) 

 Nitrogen Phosphorous Potassium 

Fertilizers for typical agricultural use 5 10 10 

Stabilized sewage sludge (bio-solids) 3.3 2.3 0.3 

(Metcalf, Tchobanoglous, & Burton, 1991) 
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Figure 4 | Comparing the constituents of biosloids to those of soil (C. Henry, UWB) 

However, despite the large volume of scientific research done on bio-solids, and in spite 

of the considerable improvements in quality and developments in wastewater treatment 

technologies, sludge use acceptance in agriculture continues to attract controversy and 

skepticism, with environmentalists pushing for regulated land spreading of sludge while 

the end consumer opposing its use – as sewage sludge is widely perceived by the 

general public as refuse toxic waste (because of its fecal connotation and origin) and not 

a product of value. 

In fact, sewage sludge comes with wide array of potentially-toxic anthropogenic waste 

indicators (AWIs) including pharmaceuticals, pesticides, anti-bacterials used in soaps, 

industrial synthetic chemicals, fragrances used in perfumes and detergents, heavy 

metals, and other chemicals that wastewater treatment plants aren’t capable of 

removing.  Though the US EPA has promoted and endorsed the use of sewage sludge 

as fertilizer for many years, a fairly recent study revealed that earthworms living in 

sludge-treated soils were absorbing the pharmaceuticals and personal care product 

ingredients (PPCPs) that WWTPs left behind concentrated in the sludge.  In fact, 25 of 

the 28 AWIs detected in the biosolids applied to a soybean field were also found in the 

earthworms from the same field (Kinney, et al., 2008).  Even though such a study 

highlights the earthworms’ remarkable ability to detoxify soils, yet, the results has led 

many scientists to suspect that chemicals can build up in the crops growing in the treated 

soil and eventually find their way up through the food chain.  
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Table 8 summarizes some of the EPA regulated trace elements that can be present in 

biosolids when used in land application. 

 

Table 8 | Trace elements ceiling values (United States Federal Register, 1993) 

  U.S. Regulations 

Nutrients 

Typical Biosolids 
(mg/kg dry) 

Land  
Application

(1)
 

(mg/kg dry) 

Home  
Garden

(2)
 

(mg/kg dry) 

Crop  
Production

(3)
 

(Kg/ha) 

NH4-Nitrogen 0.57  0.30 --- --- --- 

Organic N 4.13  1.03 --- --- --- 

Total P 2.27  0.89 --- --- --- 

Total Potassium 0.31  0.27 --- --- --- 

pH 7.0  0.5 --- --- --- 

Pollutants Range Median    

Arsenic 1.1 - 230 10 75 41 41 
Barium N/A N/A    
Boron N/A N/A    
Cadmium 1 - 3,410 10 85 39 39 
Chromium 10 – 99,000 500    
Cobalt 11.3 – 2,490 30    
Copper 84 – 17,000 800 4,300 1,500 1,500 
Iron 1,000 – 54,000 17,000    
Lead 13 – 26,000 500 840 300 300 
Manganese 32 – 9,870 260    
Mercury 0.6 - 56 6 57 17 17 
Molybdenum 0.1 - 214 4 75   
Nickel 2 – 5,300 80 420 420 420 
Selenium 1.7 – 17.2 5 100 100 100 
Silver 2.6 - 329 14    
Zinc 101 – 49,000 1,700 7,500 2,800 2,800 

(1) Recommended ceiling limits acceptable for land application 
(2) Maximum monthly average trace element concentrations (Lawns/home gardens in residential locations) 
(3) Maximum cumulative application of trace elements that can be applied to soils for crop production 

Furthermore, data from numerous scientific studies showed that bio-solids-treated 

soils contained higher antibiotic-resistant bacteria (ARB) than the un-amended soils 

(Auerbach et al., 2007; Brooks et al., 2007; Munir et al., 2010) – thereby supporting the 

public’s concern of the potential health hazards associated with the long-term utilization 

of bio-solids as fertilizers. 

2.4 Land filling as a management option 

Modern, state-of-the-art landfills are carefully regulated facilities, managed to reduce air 

pollution, control leachate and minimize odors.  In cases where the beneficial use of bio-

solids for agronomic purposes is neither applied nor practiced, sanitary landfills may 

become the designated final burial sites for the stabilized bio-solids.  In almost all 

countries, sewage sludge must be dewatered to at least 15-20% solids prior to land filling 
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to avoid the excessive generation of leachate.  Whilst dewatering is costly, it is often the 

only requirement for burying sewage sludge in a land fill – making it an easy 

management option for many countries – especially in countries where there is sizable 

public concerns about biosolids applications to soils.  

Today, there is a worldwide understanding of the problems associated with biosolids’ 

disposal in landfills. The European Union, for example, has directed the phasing-out the 

land-filling of organic wastes mostly because of the concerns about the releases of 

methane – a potent greenhouse gas.  Japan is recognizing wastewater sludge as too 

valuable a resource to reject and is now focused on avoiding land filling of organic 

wastes.  Australia reports that “landfilling is not considered a beneficial use of bio-solids 

and is not, or soon will not, be an acceptable option in any state or territory.”  Austria 

does not allow sludge land filling if it contains more than 5% total organic carbon by dry 

weight or if it contains more than 6000 KJ of energy per kilogram dry weight. 

2.5 Cost comparison of disposal and recycling routes for sewage sludge 

Sludge amounts to about 2% by volume of processed domestic sewage, but handling it 

accounts for up to 50% of the total operating costs of a typical wastewater treatment 

plant (Lehr & Keeley, 2005).  Regardless of the sewage sludge disposal and/or recycling 

route under investigation, the total costs involved are mainly comprised of: 

I. Investment costs (including land, equipment, installation, and civil works) 

II. Operating costs (including labor, energy, and transportation) required for 

sludge conditioning and treatment before disposal/recycling.   
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Figure 5 shows the average total costs of sludge disposal and recycling in Europe with 

land spreading routes as the best ranking while land filling and incineration are the worst 

ranking disposal routes in terms of overall cost (European Commission DG Environment, 

2002). 

 

Figure 5 | Average total cost of various disposal/recycling routes of sewage sludge in Europe  

(European Commission DG Environment, 2002) 

Figure 6 shows a cost-benefit analysis (CBA) of a wide range of solids disposal outlets.  

The land-spreading  of composted biosolids is identified as the most re-use option for 

wastewater sludge with benefits reaching up to € 70/ton.  The benefits in this route are 

reaped in the form of fertilizer savings. 
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Figure 6 | Average total costs and benefits (shown as negative values) of various 

disposal/recycling routes of sewage sludge in Europe (European Commission DG Environment, 

2002) 

 

2.6 Sewage sludge as a construction material  

As increasingly stringent environmental-control mandates are introduced and enforced, 

the traditional disposal routes of land application, land-filling, and incineration of 

processed bio-solids will come under pressure and may no longer be viable and cost-

effective disposal outlets for sanitary engineers to capitalize on (Wang et al, 2008).  

Furthermore, the extraction of natural aggregates (i.e. sand, rock, and gravel) for use in 

building materials is associated with detrimental environmental impacts – with some 

countries moving to impose taxation laws on such excavation practices.  As a result, the 

viability of using alternative aggregates - such as biosolids  -  as building materials is 

expected to increase.   
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2.6.1 Background 

The rapidly growing world population - expected to increase from 6.5 billion today to 9 

billion by 2050 - along with the torrid economic proliferation in much of the developing 

world, will exert stress on existing wastewater treatment facilities requiring them to be 

expanded and upgraded.  As urban planning progresses (every week, from now until 

2050, over one million people will added to cities) and new investments are poured into 

building new excreta and wastewater collection and treatment systems, the global 

sewage sludge production rates will be on the rise and massive stockpiles of the 

generated bio-solids will require more cost-effective, efficient, and environmentally 

friendly management practices.   

In order to meet the challenges of controlling the quantity and characteristics of bio-

solids in such a way that adverse environmental implications are minimized and 

beneficial uses are optimized, innovative technologies are being developed, investigated, 

and applied that make the end use of bio-solids (particularly those of industrial origin) - 

as a non-conventional building material - an economically-viable alternative.   

Concrete is by far the most widely used construction material in the world and it plays a 

vital role in all infrastructure construction and earthworks.  Concrete’s versatility allows it 

to bind with many types of materials and engineers are focusing on finding new, 

cheaper, and environmentally-friendly aggregates that can increase the durability of 

concrete while decreasing the production cost at the same time.   

Civil engineers have succeeded in re-using brick rubble, crushed concrete, and other 

construction/demolition/excavation waste materials as concrete admixtures to construct 

new roads along with their embankments.  Sanitary and environmental researchers have 

taken the work of their civil engineering counterparts a little further by exploring the 

feasibility of incorporating solids and organic wastes into concrete works.  In this domain, 

their recent research work revolved around exploring the use of bio-solids or bio-solids 

ashes as a core ingredient or as an admixture in the manufacturing of precast bricks or 

concrete blocks intended for use in the non-load bearing building and construction 

industry.  Furthermore, stabilized sewage sludge has also been investigated as a 

potential alternative fuel resource (AFR) that can be used in kilns for the manufacturing 

process of cement and other cementitious materials. 
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The diagram in Figure 7 shows an overview of the lifecycle of re-using sewage sludge in 

the cement industry domain.  The mixing of biosolids with cement is intended to minimize 

the use of virgin building materials and increase the use of recycled materials as well – a 

strategy that can help in the development of an “ideal” management option to the 

sewage sludge disposal dilemma (see Figure 3). 

 

 

 

 

 

 

 

 

 

 

In light of the biosolids production-disposal  lifecycle, viewing sludge as a marketable 

product implies that sludge production should be optimized at the source, rather than 

minimized. 

2.6.2 Use of biosolids and biosolids ash in clay bricks 

Numerous studies have shown that sewage sludge may be used as a partial substitute 

for clay in clay-brick manufacturing.  A mixture of clay and sewage sludge ash can be 

molded and fired at high temperatures to produce high-grade clay bricks (Alleman and 

Berman, 1984; Alleman et al., 1990; Liew et al., 2004; Slim and Wakefield, 1991; Tay, 

1987; Trauner, 1993; Wiebusch and Seyfried, 1997).  The optimal conditions for 

manufacturing good quality clay bricks is by the addition of a maximum of 10% sludge 

(containing 24% moisture) to the clay mixture that is then molded and fired at 880-960 °C 

(Weng, Lin, & Chiang, 2003).  

2.6.3 Wastewater sludge as a cementitious and blended cement materials 

Figure 7 | Lifecycle of municipal sewage sludge when re-used and re-cycled to make cement 
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Other researchers studied the use of sludge ash as a lightweight aggregate that can 

enhance the thermal insulation and fire protection properties of concrete.  Documented 

results indicated that it is possible to replace up to 30% by weight of fine aggregate by 

sludge ash in a concrete mix to produce blocks with adequate mechanical resistance to 

be used as a building material (Kato and Takesue, 1984; Khanbilvardi and Afshari, 1995; 

Yip and Tay, 1990).  Okuno and Takahashi demonstrated that through high-pressure 

thermal solidification of 100% sewage sludge, the manufacturing of flooring bricks - 

mainly used for walkways and sidewalks paving - can be a technically and economically 

feasible production process (Okuno and Takahashi, 1997).  However, the production 

process is complex and involves high-pressure compaction and precisely-controlled 

firing temperatures. 

Monzo et al., (2004) used thermally-dried sewage sludge pellets (SSP) to replace 6.1% 

(dry weight) of the sand in the concrete mix to be used for paving purposes.  The 

addition of SSP yielded a slightly lower flexural and compressive strengths compared to 

the control, but the addition of a hardening accelerator to the mix compensated for the 

decrease in strength and produced paving concrete with similar strength characteristics 

as the control.  

In a similar study, Yague et al., (2002) found that the addition of 2% of dried sewage 

sludge (to cement weight) had no adverse effect on the compressive strength or on the 

durability of concrete bricks.  In fact, some SSP-amended concrete bricks exhibited 

higher compressive strength than the reference bricks after 1 year.  In a follow up study 

in 2005, Yague et al. used a 10% sludge to cement (by weight) concrete mix.  Even 

though its mechanical strength was largely reduced, the durability of the produced 

concrete was comparable to results obtained for the reference concrete not containing 

sludge.   

2.6.4 Biosolids use in load-bearing structures 

From an economic standpoint, a recent study conducted in Thailand showed that 

incorporating 20% wastewater sludge in a concrete mixture – particularily as a partial 

replacement of the fine aggregate can produce load-bearing hollow cement blocks at a 

20% reduced manufacturing cost (Kaosol, 2010).  The author did not however address 

how his pilot-scale work can be scaled-up and transferred to a cost-competitive 

production lines that can be put to use on a large-scale level. 

2.6.5 Industrial sewage sludge use in concrete works 
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While farmland application of stabilized domestic sewage sludge (bio-solids) is 

commonly accepted and widely practiced in many countries, the safe disposal of 

industrial sewage sludge poses a serious dilemma to regulating authorities because of 

concerns of contamination of the food chain by sludge-laden toxic substances, organic 

pollutants, and heavy metals.  The effective utilization of such bio-solids as raw materials 

in cement has been shown to immobilize the heavy metals in the final molded brick – 

hence becoming an integral part of the finished product (Lim et al., 2006; Weng et al., 

2002) and thus eliminating their bioavailability.   

In Egypt, a recent study provided compelling evidence that ornamental bricks with 

acceptable compressive strength can be produced and safely used, with up to 4% 

industrial sewage sludge that are heavily contaminated with the highly toxic metalloid: 

arsenic.  The experimental arsenic-containing bricks passed strict leachability tests and 

are therefore not regarded as hazardous (Mahzuz et al., 2009).  Moreover, Montgomery 

et al (1988), demonstrated that the cement solidification of heavy metals-rich sewage 

sludge causes Zincn, Lead, and Cadmium to be bound up in the cement matrix as 

insoluble hydroxides (Montgomery et al, 1988) – thereby inhibiting the metals’ mobility 

through physical encapsulation. 

2.6.6 Potential technical limitations 

In spite of the successes demonstrated in the novel utilization of biosolids as a new 

material in concrete production, there remain many key technical challenges to be 

tackled and overcome - particularly those associated with the durability and stability of 

the finished and cured product.   

Bricks cracking and shrinkage, during and after the manufacturing and curing processes, 

are two main problems encountered if in excess of 30% by weight dry sludge is used as 

core ingredient in the raw material mixture (Liew, 2004).   

Brick whitening problems due to the re-crystallization of leached calcium carbonate 

posed an aesthetic concern when the bricks were used for paved pedestrian walkways 

(Okuno and Takahashi, 1997).  Furthermore, compressive (crushing) strength is slightly 

reduced and water absorption and porosity are increased as sludge dosing rates are 

increased in the manufacturing of bricks (Pinarli and Emre, 1994). 

Another challenge is the increased porosity of the cured blocks.  Many structural fills 

require high compaction rate of concrete.  The organic matter present in biosolids-
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amended concrete does not allow the concrete to compact properly to the required 

density. 

2.6.7 Local barriers 

The potential use of stabilized sewage sludge as an additive in construction materials 

such as asphalt concrete, bricks, and cement blocks has been widely demonstrated on a 

lab-scale level and appears to provide a promising large-scale application alternative to 

bio-solids landfill disposal if market conditions are appropriate and if social barriers are 

properly addressed and overcome.  In Palestine however, the shift to greener production 

and to eco-innovations is still in its infancy stages, and thus no attempts have been 

made so far to fully explore the potential use of bio-solids produced from wastewater 

treatment plants as a new material in the construction sector.  The primary barrier is that 

the potential benefits are not adequately taken into account by urban planners and 

sanitary engineers.  In addition, the widespread adoption of bio-solids recycling 

technologies in Palestine is hindered by undeveloped markets, high transportation costs, 

health and cultural issues, as well as by absence of regulations. 

Even though the shift to producing this kind of “green” concrete can help solve the bio-

solids management puzzle – nevertheless, it may not be the ideal solution option.  This 

is because scaling-up the technology and creating a mass market large enough to give 

birth to a completely new and sustainable bio-solids management pathway can be a 

difficult task.  Furthermore, public acceptance and understanding of the science behind 

new environmental innovations can be a critical factor in large-scale technology adoption 

and commercialization and successful market penetration.  Therefore, it will be 

imperative for future research to evaluate the general public perceptions and attitudes 

related to incorporating bio-solids into building materials as well as to gauge their 

willingness to purchase and use such products.   

It is worthwhile to mention here that during the period that this study was being carried 

out, owners of local pre-cast concrete production plants refused my repeated requests to 

try to produce sample bricks blended with biosolids or sludge ashes at their facilities 

without stating the reasons behind their refusal. 

2.6.8 Increased energy costs 

On close examination of the previous and current scientific research by which sewage 

sludge was used in the construction industry, almost all of the testing and production 

processes involved the use of energy to transform the sewage sludge into sewage 
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sludge ash before incorporating it into concrete works.   In cases where sewage sludge 

with high organic content is incorporated in concrete works, thermal drying was used 

predominately to dry the sludge to form sewage sludge pellets. Again, this results in 

added cost in terms of energy expenses.  Other processes involved the use of high firing 

temperatures and pressures (i.e. thermal solidification - which translates into high energy 

costs) to mold and form bricks made with 100% raw sewage sludge.  Most of these 

technologies will never be able to reach the market – this is because, in order to increase 

the ideality of an effective biosolids management system one has to decrease its energy 

consumption  and not the other way around. 
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CHAPTER 3 

RESEARCH DESIGN AND APPLIED METHODOLOGIES 
 

3.1 Introduction 

The potential reuse of wastewater bio-solids and incinerated sewage sludge ashes as 

additives into construction materials may alleviate sludge disposal problems and offer 

economic, ecological, and energy saving advantages at the same time. 

3.2 Experimental approach 

In this study, the incorporation of sewage sludge and sewage sludge ashes into concrete 

blocks was systematically investigated.  The proportion of sludge and ashes in the 

concrete bricks was varied in order to determine the resultant positive or negative effect 

on the efficiency of the concrete manufacturing process and on the produced product.  In 

each of the experimental trials, the quantity of cement and water used in the concrete 

mixture were kept constant. 

The approach was to experiment with various sludge dosing ratios (making use of both 

solar-dried biosolids and sewage sludge ashes) and then to evaluate and analyze the 

corresponding physical properties of the concrete mix paste and of the produced 

concrete bricks – mainly those properties affecting the structural integrity of the cement 

mix and of the cured concrete.  Physical property results are then compared and 

contrasted against those for pre-cast concrete bricks that are free from any biosolids or 

sewage sludge ashes (i.e. control samples). 

The words “concrete bricks” and “concrete blocks” are used interchangeably throughout 

this study and they refer to hollow or non-hollow concrete units made from sand, crushed 

stone, water, and cement and that can be used in general-purpose outdoor building of 

non-load-bearing walls and structures.  The bricks are moist-cured but are not subjected 

to any heat or firing during or after the curing process. Figure 1 shows a typical semi-

automatic facility that produces these kinds of bricks located in the Ramallah area. 
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Figure 8 | Typical concrete bricks-manufacturing facility located in the city of Ramallah 

Furthermore, the economic feasibility of producing and marketing sewage-amended 

concrete blocks was also investigated.  This was accomplished by carrying out a 

production cost analysis of the most widely produced and used concrete masonry unit in 

the West Bank area.  Brick production costs were based on already established brick-

making factories as they are usually looking for innovative ways to cut production costs 

without compromising on quality. 

Assuming that the cost analysis will involve factories in operation, the variables to be 

determined were based on operational costs and raw materials costs only.  It is assumed 

there will be no major modification to the brick production processes. The only additional 

capital and investment cost is assumed to be incurred by the WWTP to dry, grind, and 

store the sludge to make it in a form that is usable by concrete manufacturing plants. 

The production cost of a unit brick is estimated using the conventional raw materials and 

is then compared to the production cost of the same unit brick but using sewage sludge 

i) as an additive to the raw materials; ii) and as a partial replacement for the raw 

materials.  Production costs were obtained mainly via interviews to three major brick-

making factories based in the Ramallah area. 

The monthly savings in the production cost is calculated using: 
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Savings = total production cost (using conventional raw materials) – total production cost 

(using alternative raw materials). 

Figure 9 below outlines the experimental procedure designed to test the technical 

feasibility of using the sludge and sludge ashes in the manufacture of concrete bricks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the first stage, fresh dewatered sewage sludge was collected and transported to the 

laboratory – a part of it for passive sun-drying and the other part for incineration.  The 

next stage involved manual grinding of both the dried and incinerated samples and then 

their subsequent incorporation into a set of three pre-designed concrete mixtures 

(grades M20, M25, and M30) consisting of cement, crushed stone, sand, and tap water.  

The wastewater sewage sludge was blended into the concrete mixture as an additive - in 

Figure 9 | Flowchart of experimental procedure designed to test technical feasibility 
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quantities of 10%, 20%, and 30%.  The sludge portions were measured and added as 

percentages of the weights of cement in each sample. 

The effect of the addition of the solids to the concrete mixture is analyzed and an 

optimum biosolids-amended concrete mixture is selected (one of 0 – 10%, 10 - 20%, or 

20 – 30%) based on an acceptable compressive strength value.    

The determination of an acceptable strength value was based on reported values of 

average compressive strength of concrete masonry hollow bricks representing actual 

tests done for brick-making factories (Table 9) over a period of 1 calendar year. Those 

test results were obtained from a reputable testing laboratory in the Ramallah area. 

Table 9 | Reported compressive strength representing actual tests performed for brick-making 

factories 

Item analyzed Compressive strength Specification requirement(3)  

CMU(1) 40 x 20 x 10 cm 4.5 – 7.0(2) MPa 3.5 Mpa 

(1) Concrete masonry unit (non-load bearing; used for construction of non-load bearing walls and 
structures) 

(2) Adjusted to account for void volume 
(3) Palestinian Standards specification 0P01-2010 

 
The lowest value reported is 4.5 MPa which exceeds the specifications by about 30%.  

The acceptable compressive strength value used in this study is assumed to be the 

value that exceeds the specification by one-third of that number (i.e. 10%). 

  
After determining an acceptable percentage range for a sludge dosage (both for dried 

biosolids, and sludge ashes),  a similar trial program was set up but this time using 

sludge and sludge ashes to replace the second most expensive component in the 

concrete mixture which is sand. 

3.3 Materials and methods 

The concrete used in this research is a mixture of ordinary Portland cement (OPC), sand 

(as the fine aggregate), crushed stone (as the coarse aggregate), ordinary tap water, 

and dewatered wastewater sludge (as solar-dried biosolids, and as incinerated ashes).  

Control specimens contained all of the mix constituents with the exception of sewage 

sludge or incinerated sewage sludge ashes. 

 

3.3.1 Portland Cement  

According to the ASTM, there are five basic types of Portland cement: 
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Type I regular cement for general use 
Type II  moderate sulfate resistance 
Type III high early strength because of increase in C3SiO2 
Type IV low heat 
Type V  high sulfate resistance 

 

Commercially available all-purpose Portland cement (manufactured by Nesher Cement, 

Inc. of Israel) is used throughout this research.  The cement conforms to the ASTM C150 

specifications. 

 

The same cement grade is used in typical brick-making factories in Palestine.  Figure 10 

shows the characteristic compressive strength of the obtained Nesher cement as 

obtained from the manufacturer’s specifications on the website (http://www.nesher.co.il)  

Once the 50.0 Kg cement bags were opened, they were placed in large plastic bags so 

as to seal them from contact with air and moisture. 

 

 
Figure 10 | Nesher concrete compressive strength as a function of curing age  

(According to the manufacturer’s specifications) 

 

 

3.3.2 Water 

 

Water causes the hydration of the cementitious material to form a cement paste that 

bonds together the sand and gravel and other components of the concrete to form a 

hardened solid mass.  Throughout his research, regular laboratory tap water of Al-Bireh 

was used for the cement hydration.   
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3.3.3 Aggregates 

 

The combination of fine and coarse aggregates (inert materials) make up 70% - 85% of 

the concrete mass.  Their properties (such as type, quality, cleanliness, grading, and 

moisture content) have a large influence on the concrete’s freshly mixed and cured 

properties, mixture proportions, as well as economy. 

 

 

3.3.3.1 Physical properties | Relative density 

 

The relative density (specific gravity) of the aggregates is the ratio of its mass to the 

mass of an equal absolute volume of water.  In this work, the relative density value will 

not be used as an aggregate quality parameter, but only in the computation of the 

concrete mixture proportioning (Appendix I). 

 

ASTM C128 and ASTM C127 were used in the laboratory to determine the relative 

densities for fine and coarse aggregates respectively.  

 

3.3.3.2 Physical properties | Absorption capacity and surface moisture 

 

The water absorption of aggregates was determined in the laboratory according to ASTM 

C127 and ASTM C128.  

The aggregate moisture classification (4 states) of aggregates is illustrated in Figure 11.  

In theory, the amount of water that is intended to be added to the concrete mixture 

should be adjusted to account for the water present in the aggregates as per Figure 11 

(for example, less water is needed if the aggregates were in the damp/wet state than if 

they were oven-dried).  Otherwise, the water-cement ratio (w/c) will vary - causing the 

workability and compressive strength to change.  In fact, most fine aggregates can 

maintain a moisture content of 3% and some can even maintain higher moisture content 

of 8% - which, if not taken into consideration, will cause the w/c ratio (and hence the 

compressive strength of the cured concrete) to change drastically. 
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Figure 11 | Four moisture states of coarse and fine aggregates 

3.3.4 Wastewater Sewage sludge (dewatered biosolids) 

 

The sewage sludge was collected from the belt-filter dewatering press of Al Bireh 

wastewater treatment plant (AWWTP) over a period of 6 months.  The treatment plant, 

located 14 kilometers north of Jerusalem, started operation in August of 2000 using an 

extended aeration system with a mechanical solids handling and a simultaneous aerobic 

sludge stabilization. Sewage sludge generated at the Al-Bireh wastewater treatment 

plant is usually thickened, dewatered using an electro-mechanical press filter, and then 

hauled away to dumping sites.  In other words, none of the Al-Bireh produced bio-solids 

are recycled or re-used for beneficial purposes.  Nevertheless, there is increasing 

interest among researchers at local Palestinian universities to initiate projects and carry 

out assessment studies that explore the feasibility of putting the generated biosolids to 

wide applications of beneficial uses. 

Table 10 | Design and operating parameters of AWWTP(1)
 

Description Criteria 

Design capacity 50,000 PE (Expandable to 100,000 PE) 
Dry weather daily flow 5750 m3/d 
Dry weather peak hourly flow 480 m3/h 
Rainy weather peak hourly flow 720 m3/h 
BOD (Effluent) 20 mg/l 
TSS (Effluent) 30 ml/l 
MLSS (aeration tank) 4 g/l 
Sludge age ≥ 20 days 
F/M ratio ≤ 0.05 kg/kg.d 

(1) As reported by the Al-Bireh municipality 

 

Biosolids production at the treatment plant varies depending on the season – with the 

summer period having the largest quantities of biosolids generated from the thickener 

tank.  According to the plant operators, an average of 500 m3 of liquid sludge is 

processed by the belt-press dewatering machines.  Under normal conditions, and with an 
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average of 20% solids content, the liquid sludge is reduced by dewatering to a volume of 

about 100 m3 on a weekly basis. 

 

3.3.4.1 Sample collection 

 

Dewatered biosolids were not always readily available at the wastewater treatment plant 

as trucks haul the biosolids away to dumping sites on a regular basis.  Thus the 

municipality of Al Bireh had to be contacted so as to obtain a permission to collect 

biolsoids samples as well as to coordinate and arrange for a suitable collection day and 

time. 

 

At the AWWTP, samples were collected at the place where biosolids are stockpiled in 

large metal containers at the belt-press exit (i.e. point of discharge). 

   

Using a large spatula, 10-12 small grab samples were taken from different biosolids 

stockpile loads and placed into a stainless container to make one composite sample of 

total weight of roughly 10 kg.  Some stockpiles had formed crusts due to the weathering 

action – and attention was given so that the samples were taken from below the surface 

of any crusting formations.  The grab samples were then mixed together thoroughly and 

were subsequently transported to the solar drying location. 

 

Twenty nine (29) other composite biosolids samples (of roughly 10 kg each) were 

collected in the same manner as described above over a period of six months.  

According to the AWWTP operator, all the biosolids stockpiles from which the samples 

were collected were more or less fresh stockpiles and none were more than 2-3 days 

old. 

 

3.3.4.2 Sample preparation 

 

I. Solar-dried biosolids 

Since thermal drying is an energy-intensive process and its associated energy costs 

could affect the marketability of the final product (i.e. bio-solids-amended bricks), a 

simple process of open-air and sun (solar) drying was used to further remove the 

remaining liquid from the grab collected dewatered biosolids cake samples.  In solar 

drying, surface aeration is supplied by means of the wind, and the sludge is heated by 

the direct exposure to solar radiation.  The principle advantages of utilizing this low-
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technology drying method are attributed to its low cost, infrequent attention required, and 

high solids content in the dried product.  Problem areas include large land requirements, 

sensitivity to climatic conditions (primarily rainfall, humidity, and snow), and most 

frequently, offensive odor emissions.  

 

Two open, concrete-paved solar-drying beds (1.5 m2) that are lined with artificial media 

(clear polyurethane sheets) were prepared and used to dry the dewatered biosolids 

samples in batches of roughly 10 kg each (Figure 12).  The biosolids batches were 

weighed and then uniformly spread on each of the two beds to a height of 15 cm and 

were manually turned using a shovel once every 12 hours so as to enhance the solar 

drying efficiency.  Careful monitoring of the drying beds confirmed that the biosolids 

batches produced no visible leachate.  After 14 days (336 hours) of drying (and turning), 

the biosolids were uniformly dried from top to bottom.  The biosolids’ weight was reduced 

by an average of 90% (i.e. the sludge originally contained about 10% dry solids) to a 

thickness of roughly 5 mm due to the evaporation of the water from the samples.   

 

 

Figure 12 | Dewatered sewage sludge sample on solar-drying bed 

 

 

During the winter months, a closed tunnel-type system was erected to protect the sludge 

from rainwater while drying (Figure 13).  The greenhouse effect provided effective usage 
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of solar energy - thus allowing the inside temperature to be 10  3 °C higher than the 

outside temperature on average during daytime.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 | Schematic view of the tunnel-type greenhouse enclosure for sludge drying 

 

After the manual turning/drying cycle has been completed (i.e. after 14 days and at 

which the daily change in weight reduction is less than 1%), the biosolids were hard, 

appeared to have a coarse and porous texture, had a deep dark brown color, and 

possessed a strong unpleasant and offensive smell (Figure 14).   

 

 

Figure 14 | Solar-dried wastewater sewage sludge 
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One grab sample was taken from each of the 2 drying beds to make one composite 

sample that was placed in a sealed plastic bag and then delivered to the materials lab to 

be grinded/powdered (using a manual mortar grinder) to the required grain-size and then 

stored in tight plastic containers awaiting to be incorporated into concrete (Figure 15). 

 

 

 

 
Before grinding After manual grinding 

Figure 15 | Solar-dried biosolids 
(Total drying period: 14 days | Average daily daytime ambient temperature: 23 °C) 
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II. Incinerated biosolids (ISSA) 

ISSA generally meets the waste acceptance criteria as an inert waste within the meaning 

of the Waste Framework Directive.  No standards currently exist on the use of ISSA in 

the construction industry. 

There are no sewage sludge incinerator plants in operation in the West Bank.  As a 

result, sewage sludge ashes had to be incinerated in the laboratory (Figure 16).   

 

 

Figure 16 | Laboratory-incinerated wastewater sewage sludge ashes (ISSA) 

 

The incineration process thermally destroys the organic matter in the sewage sludge.  

Typically, ISSA contain about 25% silicate, 33% calcium oxide, and 20% phosphate 

(Gunn, 2004). 

 

In functional terms, the incinerated sewage sludge ash could have pozzolanic properties 

(reactive silica that exhibits cementitious properties when it reacts with calcium hydroxide 

in the presence of water) which makes it potentially useful as an addition to Portland 

cement mixtures – as it could increase the long-term strength of concrete (> 28 days) 

and could reduce the material cost of the concrete. 

 

In order to obtain SSA, to be used as an additive and as a sand replacement, the 

dewatered sewage sludge was heated in the laboratory in an electric oven at 550  5 °C 
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for 3 hours.  Afterwards, the obtained SSA was manually grinded using a manual mortar 

grinder for 5-7 minutes.  The particle size distribution of the resultant fine ashes is 

presented in Table 11 and Figure 17. 

  

Table 11 | Granulometry of dry sewage sludge and of sewage sludge ash 

Sieve Opening Size(1) Dry Sewage Sludge Sewage Sludge Ash 

 Gradation (% passing) Gradation (% passing) 

4.76 mm  #4 sieve 100% 100% 
2.38 mm  #8 sieve 98.5% 100% 
2.00 mm  #10 sieve 95.1% 100% 
1.00 mm  #18 sieve 89.1% 91.1% 
0.85 mm  #20 sieve 69.1% 85.2% 
0.42 mm  #40 sieve 49.4% 70.2% 
0.21 mm  #70 sieve 39.4% 53.0% 

0.149 mm  #100 sieve 15.0% 42.1% 
0.074 mm  #200 sieve 4.4% 20.5% 
0.037 mm  #400 sieve -- 4.5% 

    
Bulk density -- 2.92 g/cm3 

(1) US Sieve Series 

 

Figure 17 | Particle size distribution curve for the manually grinded SSA 
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3.4 Experimentation program and testing procedures 

3.4.1 Concrete mix design 

In order to minimize the cost of production while maximizing the amount of biosolids 

used, it was desirable to cast concrete bricks containing the highest proportion of 

biosolids while containing the lowest amount of cement – as cement is the most 

expensive component of all of the concrete basic mix components. 

 

The mix design procedure must therefore ensure that the minimum required amount of 

cement is utilized so as to achieve the required final strength (i.e. target strength) of the 

cured concrete and at the same time, the concrete to act as a stabilizing matrix to the 

biosolids that were incorporated as an additive.  The Indian Standard IS 10262:2009 

(Appendix I) was used in this study to create economic (lowest quantity of cement 

usage) concrete mix designs.   

 

3.4.2 Sample proportioning 

In the first step, a benchmark experimentation program was carried out using 3 different 

concrete mix designs so as to produce 3 different grade types (M20, M25, and M30).     

 

I. Solar-dried wastewater sludge were added in ratios of 10%, 20%, and 30% 

(biosolids to cement weight) to each of the 3 concrete grade mixtures - 

making a total of 9 specimen variations.  Additional specimens (for each of 

the 3 grades) are also made as a control sample that did not contain any 

biosolids (Table 12). 

II. Sludge ashes were added in ratios of 10%, 20%, and 30% (biosolids to 

cement weight) to each of the 3 concrete grade mixtures - making a total of 9 

specimen variations.  Additional specimens (for each of the 3 grades) are also 

made as a control sample that did not contain any biosolids (Table 12). 

 

3.4.2.1 Benchmark test: biosolids as additive 

 

This test was performed to identify a rough value of a “threshold ratio” (of biosolids to 

cement) at which the produced bricks cannot be marketed and thus are not acceptable in 

terms of one or more of the following performance indicators: 
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 Physical strength after 7, 28 and 90 days of curing (i.e. to meet the standards 

set for similar-purpose concrete blocks (Table 9)) 

 Process efficiency (i.e. workability is not drastically altered so as to affect the 

bricks manufacturing processes such as clogging of the bricks-making 

machine)  

 Density and compaction (i.e. form finish: produced blocks are fully formed and 

have smooth sides and the ability of the concrete mix to being molded into 

components of any shape) 

 

Table 12 | Biosolids-amended mix proportions for benchmark test 

Test  
ID(1) 

Concrete 
Grade 

wastewater sludge 
(% wt of cement) 

OPC : sand : crushed stone mix ratios 
W/C 
ratio Portland 

cement 
Sand 

Crushed 
stone 

M20-00B-ADD M20 0% 1 1.5 3 0.52 

M20-10B-ADD M20 10% 1 1.5 3 0.52 

M20-20B-ADD M20 20% 1 1.5 3 0.52 

M20-30B-ADD M20 30% 1 1.5 3 0.52 

M20-00B-ADD M25 0% 1 1.3 2.6 0.45 

M20-10B-ADD M25 10% 1 1.3 2.6 0.45 

M20-20B-ADD  M25 20% 1 1.3 2.6 0.45 

M20-00B-ADD M25 30% 1 1.3 2.6 0.45 

M20-00B-ADD M30 0% 1 1 2 0.39 

M20-10B-ADD M30 10% 1 1 2 0.39 

M20-20B-ADD M30 20% 1 1 2 0.39 

M20-30B-ADD M30 30% 1 1 2 0.39 

  
Sludge ashes 

(% wt of cement) 
    

M20-00A-ADD M20 0% 1 1.5 3 0.52 

M20-00A-ADD M20 10% 1 1.5 3 0.52 

M20-00A-ADD M20 20% 1 1.5 3 0.52 

M20-00A-ADD M20 30% 1 1.5 3 0.52 

M20-00A-ADD M25 0% 1 1.3 2.6 0.45 

M20-00A-ADD M25 10% 1 1.3 2.6 0.45 

M20-00A-ADD M25 20% 1 1.3 2.6 0.45 

M20-00A-ADD M25 30% 1 1.3 2.6 0.45 

M20-00A-ADD M30 0% 1 1 2 0.39 

M20-00A-ADD M30 10% 1 1 2 0.39 

M20-00A-ADD M30 20% 1 1 2 0.39 

M20-00A-ADD M30 30% 1 1 2 0.39 

(1) M20: concrete grade | 00B: 0% biosolids 00A: 0% ashes | ADD: biosolids as additive to mixture 
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Each specimen consisted of three identical bricks (as replicates) made for each of the 

mix ratios in the benchmark test and the average is calculated for each of the values for 

the compressive strength of the produced and cured blocks.   

 

 

 

 

 

 

 

 

 

3.4.2.2 Biosolids and ashes as sand replacement 

 

In this stage, a second experimentation program was designed based on the results of 

the previous benchmark test (which gave the rough value of the maximum biosolids dose 

along with the optimal concrete mix design that produced acceptable blocks).  The 

purpose is to fine tune the maximum amount of biosolids and ashes that can be 

incorporated into concrete while producing acceptable bricks and at the same time 

holding the resultant ratio of cement:sand:aggregates constant. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13 shows a sample mix proportions for preparing grade M20 concrete.  The table 

shows the quantity of sludge to be added for each trial. 

Figure 18 | Methodology for conducting benchmark test – details are listed in Table 12 

Mix design computed for 

M20, M25, M30 

Additive: Sun-dried biosolids 

4 trials: 0%, 10%, 20%, 30% 

3 bricks for each specimen 

Additive: Incinerated sludge 

4 trials: 0%, 10%, 20%, 30% 

3 bricks for each specimen 

Compare physical 

properties at 7-, 28-, and 

90-days 

Results reported as 

average of 3 bricks 

Mix design use is 

concrete of grade M20 

Sand replacement 

2 trials: 0%,  

2.5% biosolids + 7.5% ashes 

3 bricks for each specimen 

Sand replacement: 

Incinerated sludge 

2 trials: 0%, 10% 

3 bricks for each specimen 

Compare physical 

properties at 7-, 28-, and 

90-days 

Results reported as 

average of 3 bricks 

Figure 19  | Methodology for fine-tuning optimum sludge dosage – details are listed in Table 

12 
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Table 13 | Mass of raw materials and amount of water required per brick mold for different 
proportions of added sludge (wt %) – Grade M20 concrete 

 Mass of raw materials and water as required per brick 

Wastewater Sludge 
(wt. % of cement) 

Portland cement 
(g) 

Sand 
(g) 

Crushed stone 
(g) 

Sun- dried 
sludge 

(g) 

Mixing water 
(g) 

Total mass of 
mixture 

(g) 

0 (Control) 386.5 611.1 1199.2 0 201 2398.2 

10% 386.5 611.1 1199.2 38.7 201 2436.9 

20% 386.5 611.1 1199.2 77.3 201 2475.5 

30% 386.5 611.1 1199.2 116.0 201 2514.2 

 

3.4.3 Assessment of the concrete blocks manufacturing technology 

 

Concrete masonry has become a standard building material as it is used to create 

structures that are economical, energy efficient, fire-resistant, and requires minimal 

maintenance.  The blocks are manufactured in of shapes and sizes, either solid and 

hollow, dense or lightweight, air-cured or steam-cured, load-bearing or non-load bearing.  

Many concrete blocks manufacturing processes use pumice aggregates (porous 

vesicular material) to create lightweight masonry blocks. 

 

The most common sizes that are produced in Palestine are listed in Table 14: 

Table 14 | Standard-type CMUs (lightweight) that are produced in the West Bank 

Masonry concrete 
Block dimensions 

(WxHxL) 

Weight (Kg) Density (Kg/m3) Cavities % 

Minimum 
Compressive Strength 

(Kg/cm2) 

Non-load 
bearing 

Load 
bearing 

20 x 20 x 40 cm 14 - 20 875 - 1400 47.8 35 70 

15 x 20 x 40 cm 15 667 46.9 35 70 

10 x 20 x 40 cm 10 1375 40.2 35 70 

7 x 20 x 40 cm 7.5 1428 40.1 35 70 

4 x 20 x 40 cm 5 1607 --- 35 70 

 

The standard concrete block is a rectangular 20 x 20 x 40 cm produced mainly from 

Portland cement, gravel, sand, and water and has water absorption of a maximum of 

20% of the dry weight of the block. 
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Some manufacturing plants produce concrete blocks only, while others may produce a 

wide variety of precast concrete products including blocks, flat paver stones, and 

decorative landscaping pieces such as lawn edging. The typical production of concrete 

blocks consists of 3 basic process stages: mixing, molding, and curing (Figure 20).  In 

the molding stage, the machine consolidates and compacts the low-slump concrete mix 

into the desired shape so that the blocks are uniform in size and attain the desired shape 

properties. 

 

 

 

 

 

Figure 20| Typical concrete blocks production process stages (used by existing factories) 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 21| Typical concrete blocks production process stages (no modification is necessary if 
drying, grinding, and storing biosolids is done at the WWTP) 
 

In order to incorporate solar-dried biosolids or sewage sludge ashes into the concrete 

blocks manufacturing process, no major or costly modification to the existing process is 

necessary.  The only necessary modification is an additional unit for grinding the sludge.  

The factory is assumed to have a storage facility on site for the sludge.  The solids 

maybe introduced into the mixing stage after the water has been added to the concrete 

mix (Figure 21). 
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3.4.4 Assessing physical properties 

 

Physical properties of the concrete paste (slump) and the cured concrete brick 

(compressive strength, density, and water absorption) are the basis for the performance 

criteria for this study. 

 

3.4.4.1 Consistence tolerance (slump) 

 

Workability of fresh concrete consists of two components: consistency and 

cohesiveness.  Consistency describes how easily fresh concrete flows, whereas 

cohesiveness is the ability of fresh concrete to hold all of the ingredients together 

uniformly.   

 

In accordance with ASTM C143, the concrete slump test was used to help consistently 

measure the workability of each of the concrete-sludge mixes (Figure 22).    A workable 

concrete mix properly flows and fills the form properly, leaving minimal voids at the form 

face and completely surrounding any rebar to create a bond. 

 

 
Figure 22 | Determination of hydraulic-cement concrete (fresh) slump value (ASTM C143) 

 

The slump value is recorded by measuring the vertical distance between the top of the 

mold and the displaced original center of the sample.  A collapse slump will generally 

mean that the mix is too wet or that it is a high workability mix, for which slump test is not 

appropriate.  Very dry mixes, having slump 0 - 25 mm are used in road making while low 

workability mixes, having slump 10 - 40 mm are used for foundations with light 

reinforcement.   

Slump 

30 cm 

20 cm 

10 cm 



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 44 
 

Table 15 shows the classification of the concrete mix’s workability according to slump 

values.  Medium workability mixes of 50 - 90 are used for normal reinforced concrete and 

placed with vibration. 

 

Table 15 | Concrete slump classification 

Class Slump Range 
(mm) 

Slump Target 
(mm) 

Workability Maximum Variation Allowed 
(mm) 

S1 10 – 40 20 Low -20 to +30 

S2 50 - 90 70 Medium -20 to +30 

S3 100 – 150 120 Medium-High -20 to +30 

S4 160 - 210 170 High -20 to +30 

S5 220+ 220+ --- --- 

 

All the slump tests were carried out in a controlled laboratory environment.  The metal 

mold was dampened and placed on a steel plate.  The mold was filled up to one-third 

with biosolids-amended wet concrete mix.  Using a rod, the bottom layer of the concrete 

mix was hit with 25 strokes.  Next, additional concrete was added to fill two-thirds of the 

mold and the concrete mix was hit with another 25 strokes using the rod while 

penetrating the 2 layers.  A third layer was added and the rod was used again 

penetrating the top and second layers only.  The mold was then inverted and the slump 

value was measured and recorded as shown in Figure 23. 

 

 

Figure 23 | Consistence tolerance testing for biosolids-amended concrete mix (lab images) 

 

The concrete mixes that were used in the consistence tolerance testing (slump) were 

discarded and fresh mixes were used to fill the cube molds. 
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3.4.4.2 Compressive strength 

 

Concrete mixtures can be designed to provide a wide range of mechanical and durability 

properties in order to meet the design requirements of a given structure.  Compressive 

strength is the most common performance measure and is calculated by dividing the 

failure load by the cross section area resisting the load.  It can be a representative to 

assess the overall quality of hardened concrete.  Concrete compressive strength can 

vary between 2500 psi (17 MPa) for residential concrete to 4000 psi (28 MPa) in 

commercial structures.  Higher strengths of up to and exceeding 10,000 psi (70 MPa) 

can be achieved to fulfill certain design criteria.  In most cases, strength requirements for 

concrete are at a curing age of 28 days. 

All cube specimens were prepared by filling each double-mold up to a third full with 

biosolids-amended concrete wet mix using a scoop (Figure 24 – 2 top images).  Utilizing 

a compacting rod (Figure 24 – image 3), the concrete was compacted with uniform 

strokes to up to 30 times while adding more concrete to fill the molds to the top.  Using a 

rubber-covered hammer, the metal molds were tapped at their sides so as to ensure 

there are no air voids left (not shown).  The last step was to compact-finish the surface of 

the wet concrete utilizing a trowel and any excess concrete from the mold was 

discarded. 

 

 

 

 

Figure 24 | Molding steps of biosolids-amended cubes (10 mm x 10 mm x 10 mm) – @ Ramallah 

Laboratory 

1 

2 

3 4 
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Figure 25 | Biosolids-amended specimens (10 x 10 x 10 cm blocks) are being taken placed in a 

water curing bath  

Individual cube specimens were numbered, date-identified and were then covered to 

avoid water evaporation.  The cube specimens were stored in the lab at a temperature 

between 20 and 30 °C for 24 hours after which they were de-molded and then 

transferred to a temperature-controlled water bath awaiting the 7-day testing (Figure 25). 

The water-cement ratio (w/c) has an important influence on the quality of concrete 

produced.  A lower water-cement ratio leads to higher strength and durability, but may 

make the mix more difficult to place.  Figure 26 shows a relationship of the compressive 

strength of concrete as a function of the curing age under different curing conditions. 
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Figure 26 | Concrete compressive strength as a function of curing age (Kosmatka, Kerkhoff, & 
Panarese, 2008) 

As a rule of thumb, for every 1% increase in the quantity of water added, the concrete 

strength is reduced by 5%.  As can be seen in Figure 27, following the addition of 20 

liters of excess water per cubic meter of concrete, the final achieved strength may be as 

low as 50% of the desired strength.  Furthermore, the concrete will be much more 

susceptible to early-age drying shrinkage cracking reducing durability and resistance to 

surface abrasion. 

 

 

 

 

 

 

 

 

 

 

Figure 27 | Effect of uncontrolled addition of water on concrete strength and slump 
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The addition of water on-site to concrete mixtures has been a controversial topic for as 

long as concrete has been used in construction.  ASTM C94 does allow for a one-time 

on-site addition of water to adjust fresh concrete properties as long as the maximum 

specified water-cement ratio is not exceeded (ASTM C94).  

Error! Reference source not found. shows the state-of-the-art testing machine that was 

sed in the testing of most of the specimens.  The machine is fully computerized and the 

compressive strength results are automatically computed and recorded.  

The cube specimens were pressure-loaded (without shock) at a constant rate of 0.63 

MPa/s. 

 

Figure 28 | Computerized testing of compressive strength of biosolids-amended specimens 
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Figure 29 shows a sludge-amended block fracture (failure) as the loading pressure of the 

compression machine had exceeded the bearing capacity of the block 

. 

 

Figure 29 | Concrete block fracture and failure under pressure  
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3.4.4.3 Water Absorption 

 

Low water absorption is one of the most critical properties of good quality concrete 

blocks.  A concrete block with low water permeability resists the absorption of water and 

the brick is thus less susceptible to freezing and thawing.  The less the amount of water 

than can infiltrate into the brick structure, the higher is the durability of the brick and the 

higher is the resistance to the weathering conditions. 

 

For the concrete pavers and for concrete masonry units (CMUs), the absorption testing 

procedure involves drying the block specimens at a temperature of 1055 °C for 722 

hours.  The dried concrete blocks are cooled to room temperature and then fully 

immersed in a water bath for 72  2 hours.  After the specimens are taken out of the 

water, the surface moisture is dried utilizing a dry towel.  The increase in weight as a 

percentage of the original dry weight is expressed as the absorption percentage.  ASTM 

C140 specifies that the average absorption of the test samples shall not be greater than 

5% and with no individual unit greater than 7%. 

 

It is important to note that concrete water absorption by immersion is not a reliable 

performance parameter for the estimation of the concrete durability as it only gives an 

estimation of the total pore volume of the concrete (G. De Schutter, 2004). 

 

3.4.4.4 Density 

 

Concrete mixtures can be manipulated to produce end product concrete with varying 

densities and can range from 1500 to 2400 Kg/m3.  Lightweight concrete masonry blocks 

use pumice, a very lightweight mineral, as part of the coarse aggregate in the 

ingredients. 

In this study, the density was determined by directly measuring the unit weights of each 

of the dry 10x10x10 mm cube specimens before they were loaded into the compression 

machine. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

The effect of organic substances on the setting time of Portland cement and on the 

ultimate strength of cured concrete is a challenge of considerable complexity.   This 

chapter presents the laboratory results of various physical properties of hardened 

concrete blocks that have been amended with biosolids and sludge ashes namely 

physical strength, consistence tolerance, water absorption, and density. 

A benchmark test was first carried out to gauge an estimate range of biosolids to cement 

ratio at which a set of performance indicators are met.  The results outline the effect of 

the addition of sun-dried biosolids on the slump value of the concrete paste as well as on 

the compressive strength, water absorption, and density of the hardened concrete. 

4.2 Compressive strength 

The compressive strengths of 12 different hardened concrete specimens are presented 

in Table 16 - 18, tested at 7-, 28-, and 90-day curing age.  In all the runs, the cubes’ 

dimensions were 10 cm x 10 cm x 10 cm.  There were no discrepancies in the lengths, 

widths, or heights of any of the produced cubes as the concrete was cast in 12 identical 

iron-made molds. 

4.2.1 Control Samples (Free from biosolids/ashes) 

 

For each of the M20, M25, and M30 grades concrete, 3 cubes of standard 10 cm x 10 

cm x 10 cm were prepared (making a total of 9 blocks).  Their average compressive 

strengths were tested and recorded at ages of 7-, 28-, and 90-day curing age.  The 

relative compressive strengths of each of the concrete grades were calculated (Appendix 

III) and they were plotted against the laboratory curing period (Figure 30).  Visual 

inspection of the controls showed that they all had right-angled sides and contained no 

cracks.  Average compressive strength results show that their strength development was 

typical and gaining about 80 – 90% of the final strength on day 28 of the curing age. 
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Figure 30 | Relationship between compressive strength and the curing age of the control 

samples for grade M20, M25, and M30 concrete 

4.2.2 Samples containing sun-dried biosolids 

Table 16 outlines the average compressive strength results for grade M20 concrete for 3 

different sun-dried biosolids additions (i.e. 10%, 20%, and 30% dried sludge as an 

additive and measured as percentage weight of cement) recorded at 7-, 28-, and 90-day 

curing ages. 

Table 16 | Average compressive strength of M20 concrete as a function of biosolids added 

Test  
ID 

Sun-dried 
wastewater sludge 
(% wt of cement) 

Concrete Grade 

Average compressive strength of cubes (MPa) 

Age: 7 days Age: 28 days Age: 90 days 

M20-00B-ADD Control (0%) M20 19.42 23.87 27.32 

M20-10B-ADD 10% M20 16.32 20.21 23.76 

M20-20B-ADD 20% M20 15.39 19.19 21.45 

M20-30B-ADD 30% M20 13.43 16.39 19.96 

 

To better analyze and understand the effect of adding dried biosolids to the concrete 

mixture, the specific compressive strength values are calculated and graphically shown 

in Figure 30.  When compared to the control sample (specific strength 100%), results 

clearly show that there is an inverse relationship between compressive strength and the 

quantity of dried biosolids added.  On the 7th day of curing, the samples containing 30% 

biosolids showed weakened strength by as high as 30%.  Samples containing 10% dried 
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biosolids showed a decrease in compressive strength by about 13% on day 90 (Figure 

31). 

The decrease in compressive strength was expected - as the organic material present in 

the biosolids interfere with the hydration reactions and weaken the cement bonding.  

Furthermore, organic materials continuously undergo biodegradation and further 

contribute to the weakening. 

 

Figure 31 | Specific strength of M20 concrete as a function of the percentage of dried biosolids 

added 

Table 17 shows the average compressive strengths of a higher grade concrete (i.e. 

M25).   When compared to the control sample, the cubes showed a maximum of 37% 

decrease in strength on day 90 and a minimum of 17% decrease in strength on day 90.   

Again, results shows that the addition of biosolids has a detrimental effect on both the 

early age and final strengths of cured concrete (Figure 32). 

Table 17 | Average compressive strength of M25 concrete as a function of biosolids added 

Test  
ID 

Sun-dried 
wastewater sludge 
(% wt of cement) 

Concrete Grade 

Average compressive strength of cubes (MPa) 

Age: 7 days Age: 28 days Age: 90 days 

M25-00B-ADD Control (0%) M25 24.87 30.77 38.57 

M25-10B-ADD 10% M25 20.32 25.83 30.96 

M25-20B-ADD 20% M25 19.11 23.75 28.72 

M25-30B-ADD 30% M25 16.83 21.01 24.26 

 

7-day curing age 28-day curing age 90-day curing age

Control (Sludge Free) 100 100 100

10% Dried Biosolids 84.04 84.67 86.97

20% Dried Biosolids 79.25 80.39 78.51

30% Dried Biosolids 69.16 68.62 73.06
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Figure 32  Specific strength of M25 concrete as a function of the precentage of dried biosolids 

added 

Table 18 shows M30 concrete strength characteristics when being amended by dried 

biosolids.   The maximum damaging effect occurred by adding 30% biosolids and 

resulted in about 40% decrease in the average compressive strength on day 7.  The 

strength on day 90 slightly improved and increased, but still the strength-retarding effect 

is clear (Figure 33). 

Table 18 | Average compressive strength of M30 concrete as a function of biosolids added 

Test  
ID 

Sun-dried 
wastewater sludge 
(% wt of cement) 

Concrete Grade 

Average compressive strength of cubes (MPa) 

Age: 7 days Age: 28 days Age: 90 days 

M30-00B-ADD Control (0%) M30 28.92 38.74 45.40 

M30-10B-ADD 10% M30 25.34 32.12 38.87 

M30-20B-ADD 20% M30 23.87 28.55 34.45 

M30-30B-ADD 30% M30 19.27 23.23 29.71 

7-day curing age 28-day curing age 90-day curing age

Control (Sludge Free) 100 100 100

10% Dried Biosolids 81.70 83.95 80.27

20% Dried Biosolids 76.84 77.19 74.46

30% Dried Biosolids 67.67 68.28 62.90
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Figure 33 | Specific strength of M30 concrete as a function of the precentage of dried biosolids 

added 

All previous results show that even though the biosolids were dried for 2 weeks, still their 

organic content had a negative impact on the compressive strength of cured concrete.  

This is expected – as the organic material in the biosolids interferes with the bonding 

process by coating the aggregates and hindering the bonding between the aggregate 

and the cement.   

 

It is imperative to compare the effect of the addition of sewage sludge on the different 

grades of concrete.  The effect can be clearly demonstrated when a considerable 

quantity of dried sludge (i.e. 30%) is added to the mixture.  One would think that the 

biosolids addition would not affect the degree of decrease of compressive strength when 

comparing concretes with different grades.  Figure 34 shows that it does.  In fact, the 

chart shows that there a general decreasing trend of compressive strength as the 

concrete grade is increased.  This can be explained by considering the w/c ratio of each 

mixture.   

 

 

7-day curing age 28-day curing age 90-day curing age

Control (Sludge Free) 100 100 100

10% Dried Biosolids 87.62 82.91 85.62

20% Dried Biosolids 82.54 73.70 75.88

30% Dried Biosolids 58.20 59.96 65.44
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Figure 34 | Comparing relative strengths of grade M20, M25, and M30 concrete (with 30% dried 

sludge addition) 

Theoretically, the strength of concrete is inversely proportional to the amount of water 

added (or the w/c ratio) – i.e. higher grades of concrete typically have lower w/c values.  

The results in this report show that the relationship is proportional.  This is because the 

high quantity of biosolids will absorb more water and thus “starve” the mix leaving a 

partial amount of cement un-hydrated.  This results in decreased strength. 

 

4.2.3 Concrete samples containing incinerated biosolids (ashes) 

 

Incinerated biosolids (sewage sludge) contain no organic matter.  Furthermore, 

laboratory tests show that it can be considered as a neutral inorganic material as it has a 

pH value of about 7.0.  In this experimentation program, sewage sludge ashes were 

used as additive to concrete mixtures. 

Table 19 shows the average compressive strengths of cured concrete blocks as a result 

of adding 10%, 20%, and 30% of incinerated biosolids as an additive to the concrete 

mixture. 
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Table 19 | Average compressive strengths for SSA-amended concrete cubes  

Test  
ID 

wastewater sludge 
ashes 

(% wt of cement) 
Concrete Grade 

Average compressive strength (MPa) 

Age: 7 days Age: 28 days Age: 90 days 

M20-00A-ADD Control (0%) M20 19.42 23.87 27.32 

M20-10A-ADD 10% M20 19.94 24.01 26.33 

M20-20A-ADD 20% M20 17.06 21.04 24.15 

M20-30A-ADD 30% M20 15.88 19.85 24.90 

 

Specific strengths results for grade M20 concrete are shown in Figure 35.  Results 

indicate that the addition of 10% of biosolids ashes to the concrete mixture had no 

significant effect on the 7- and 28-day compressive strengths.   The compressive 

strength at age 90 days is reduced by 4%.  When the percentage of biosolids ashes was 

increased to 20%, the blocks’ strength development was reduced at the 7-, 28-, and 90-

day curing age.   

 

The addition of 30% biosolids’ ashes had a more considerable negative effect on the 7th 

and 28th curing ages.  This can be explained by the fact the the SSA is occupying a 

considerable volume of the block and in turn partially replacing a quantity of the raw 

materials particularly cement. 

 

 

Figure 35 | Specific strengths of ashes-amended concrete cubes at different curing ages for M20 

grade concrete 

7-day 28-day 90-day

Control (Sludge Free) 100 100 100

10% SSA 102.68 100.59 96.38

20% SSA 87.85 88.14 91.91

30% SSA 81.77 83.16 91.14
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Again, adding sludge ashes to a higher grade concrete mix still has an overall effect of 

retarding the strength of cured concrete.  This is clearly seen from Table 20 and Figure 

36.  However, the addition of as much as 10% of ashes does not significantly affect 

strength. 

Table 20 | Average compressive strengths for SSA-amended concrete cubes (Grade: M25) 

Test  
ID 

wastewater sludge 
ashes (SSA) 

(% wt of cement) 
Concrete Grade 

Average compressive strength (MPa) 

Age: 7 days Age: 28 days Age: 90 days 

M25-00A-ADD Control (0%) M25 24.87  30.77 38.57  

M25-10A-ADD 10% M25 23.66  31.23  37.70 

M25-20A-ADD 20% M25 22.04  28.50  36.22  

M25-30A-ADD 30% M25 20.87  26.53  34.21 

 

 

Figure 36 | Specific strengths of SSA-amended concrete cubes at different curing ages for various 

SSA dosing ratios (as % wt. of cement) 

The final test shows the compression results of the incorporation of 10, 20, and 30% 

sludge ashes in a grade M30 concrete mix (Table 21).  The effect is an overall decrease 

in strength development across the entire curing period.  However, the strength is not 

significantly affected by adding 10% of sludge ashes (Figure 37). 
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Table 21 Average compressive strengths for SSA-amended concrete cubes (Grade: M30) 

Test  
ID 

wastewater sludge 
ashes (SSA) 

(% wt of cement) 
Concrete Grade 

Average compressive strength (MPa) 

Age: 7 days Age: 28 days Age: 90 days 

M30-00A-ADD Control (0%) M30 28.92 38.74 45.40 

M30-10A-ADD 10% M30  28.22  38.09  43.78 

M30-20A-ADD 20% M30 27.65  37.01   43.98 

M30-30A-ADD 30% M30 25.98  35.32   40.65 

 

 

Figure 37 | Specific strengths of SSA-amended M30 concrete cubes at different curing ages for 

various SSA dosing ratios (as % wt. of cement) 

4.3 Consistence tolerance  

 

The consistency and cohesiveness (collectively known as the workability) of the fresh 

concrete mixtures that were amended with sewage sludge and sewage sludge ashes 

were examined utilizing simple laboratory slump tests.  The main factors affecting slump 

are the water and the additives proportions in the concrete mixture.  Typically, increasing 

the water proportion in concrete mixes results in improved workability (i.e. higher slump 

value) of the paste.  However, this is not recommended since the increase in water 

quantity will result in a decrease in strength development. 

 

In this study, and as seen in Table 22 and Table 23, the addition of sewage sludge or 

sewage sludge ashes to concrete mixtures resulted in water-reducing effects in the 
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concrete paste mixtures.  This is reflected in reduced slump readings especially when 

using dewatered and dried biosolids (Figure 38). 

 

Table 22 | Consistency and cohesiveness (workability) of the concrete paste as a function of 

various sludge proportions (as additives) 

Sun-dried wastewater sludge 
(% wt of cement) 

Average slump readings (mm) 

Grade: M20 Grade: M25 Grade: M30 

Control (0%) 72 70 70 

10% 65 65 63 

20% 60 55 55 

30% 50 50 45 

 

. 

 

 

Figure 38 | Slump as a function of the quantity of dried biosolids added 

 

Most brick-fabrication processes employ automatic or semi-automatic operated 

machinery for the mixing and molding portions of the brick-making processes.  Working 

with concrete mixtures of acceptable workability is critical to the efficient operation of the 

machines.  Mixtures of low slumps can cause frequent machine clogging and thus 

reduced process efficiency. 
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Table 23 | Consistency and cohesiveness (workability) of the concrete paste as a function of 

various sludge ash proportions (as additives) 

Sewage sludge ashes 
(% wt of cement) 

Average slump readings (mm) 

Grade: M20 Grade: M25 Grade: M30 

Control (0%) 72 70 70 

10% 70 70 65 

20% 65 65 55 

30% 60 55 55 

 

However, the results from Table 22 and Table 23 show that slump values of concrete 

pastes having sewage sludge and sewage sludge ashes of up to 10% are not 

significantly affected and thus are well within the working and acceptable range of typical 

concrete mixes. 

 

4.4 Water absorption 

 

Table 24 below shows the results of the water absorption test of the produced sludge-

amended concrete specimens for each mix after 28 days of curing.  As illustrated in 

Figure 39, the value of water absorption is directly proportional to the quantity of the 

biosolids or ashes incorporated. 

Table 24 | Water absorption capacity for sewage sludge amended concrete bricks 

Mix  
# 

Solar-dried 
wastewater 

sludge 
(% wt of cement) 

Average water 
absorption @ a 
curing age: 28 

days 

Mix  
# 

Wasterwater 
sewage sludge 

ashes 
(% wt of cement) 

Average water 
absorption @ a 

curing age: 28 days 

M20-00B-ADD Control (0%) 4.32% M20-00A-ADD Control (0%) 4.22% 

M20-00B-ADD 10% 4.59% M20-00A-ADD 10% 4.37% 

M20-00B-ADD 20% 9.52% M20-00A-ADD 20% 5.44% 

M20-00B-ADD 30% 15.32% M20-00A-ADD 30% 7.88% 

 

Concrete specimens containing more than 10% of dried biosolids exhibited a higher 

percentage of water absorption when compared to the control samples.  This indicates 

that water was being absorbed by both the concrete and the biosolids even though the 

sludge is trapped within the concrete lattice. 

 

Table 25 shows the accepted standards for water absorption rates of typical concrete 

cubes. 
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Table 25 | Maximum water absorption level according to ASTM C90 

 Concrete Type 

 Normal Medium Lightweight 

CMU density (Kg/m3) – ASTM C33 > 2000 1680 – 2000 < 1680 

Maximum Absorption Limit (Kg/m3) 208 240 288 

Maximum Absorption Limit (%) 10.4 10.4 – 14.3 17.1 

 

 

Figure 39 | Water absorption percentage in relation to the amount of sewage sludge 

incorporated 

With the exception of samples containing 30% dried sewage sludge, the water 

absorption of all the specimens was well within the technical specifications (for the 

maximum water absorption) for locally produced concrete masonry units in the West 

Bank. 

 

4.5 Density 

 

The density of concrete masonry units can range from 1500 (lightweight concrete) to 

2500 Kg/m3.  Throughout this study, trials were carried out to produce high density 

concrete on the order of 2200 to 2400 Kg/m3.  Concrete made with lightweight 
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aggregates (to produce low-density blocks) is much more expensive than ordinary-eight 

concrete. 

 

The average density of the control samples are presented in Table 26.  No considerable 

or significant change in the density of the control blocks was seen across the 7 to 90 

days of curing. 

 

Table 26 | Average densities of the control concrete blocks 

 

 

 

 

 

 

Table 27 lists the average density values for concrete amended with dried sewage 

sludge.  When compared to the control blocks, there was a noticeable reduction in the 

densities as the quantity of the sludge was increased.  The highest density decrease, 

ranging from 3 to 5%, occurred in the cube samples that contained 30% of biosolids.  

This can be attributed to an increased porosity of the cured concrete lattice as a result of 

the incorporation of wastewater sludge. 

 

Table 27 | Average densities of grade M20 sludge-amended concrete blocks 

Mix  
ID 

Sun-dried wastewater 
sludge 

(% wt of cement) 

Average density (g/cm3) 

7 days 28 days 90 days 

M20-00B-ADD Control (0%) 2.398 2.420 2.428 

M20-10B-ADD 10% 2.355 2.349 2.332 

M20-20B-ADD 20% 2.327 2.320 2.325 

M20-30B-ADD 30% 2.319 2.321 2.311 

 

Low-density concrete is desirable for many applications in the construction industry as 

long as it meets the desired durability and strength criteria.  One of the main advantages 

of using lightweight concrete is its higher thermal insulation than typical concrete.  

Therefore, the resultant decrease in the density of the sludge amended-blocks can be 

beneficial in many construction applications. 

 

The same density decreasing trend occurred in blocks amended with sludge ashes.  The 

density decreased noticeably as the sludge quantity was elevated.  However, there was 

Control grade 
designation 

Average density (g/cm3) 

Curing age: 7 days Curing age: 28 days Curing age: 90 days 

M20 2.398 2.420 2.428 

M25 2.409 2.398 2.422 

M30 2.421 2.405 2.431 
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no significant change in density for each block sample across the 7 to 90-day curing age 

(Table 28). 

 

Table 28 | Average densities of sludge ash-amended concrete blocks 

Mix  
ID 

Sludge ashes 
(% wt of cement) 

Average density (g/cm3) 

Curing age: 7 days Curing age: 28 days Curing age: 90 days 

M20-00A-ADD Control (0%) 2.398 2.420 2.428 

M20-10A-ADD 10% 2.380 2.402 2.386 

M20-20A-ADD 20% 2.361 2.355 2.379 

M20-30A-ADD 30% 2.337 2.350 2.346 

 

It should be noted that the density parameter is not a direct measure of the permeability 

of concrete.  Typically, high permeability-concrete is not desirable as it increases the 

infusion of water moisture into the concrete microstructure.    This could lead to 

accelerated deterioration of the concrete as the sulfates and chlorides in the moisture 

attack the hydrated cement. 
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4.6 Biosolids and biosolids ashes as partial replacement for fine aggregates 

The results in the previous section indicated that the addition of as much as 10% of 

biosolids ashes to a concrete mix did not affect the general physical properties (strength, 

water absorption, density, and workability) of cured concrete blocks.   On the other hand, 

the addition of an equal quantity of dried biosolids decreased the compressive strength 

of concrete by about 15 – 20% which is unacceptable since the acceptable value 

established in section 3 is 10% only. 

Theoretically, adding either biosolids or biosolids ashes (in large quantities) to concrete 

mixture essentially displaces equal portions of all the mixture ingredients including 

cement.  As a result, part of the cement is lost – thus contributing to further reduction in 

strength.   

In order to avoid the replacement of cement by the biosolids and biosolids ashes, a trial 

test is carried out for one grade of concrete (M20) using dried biosolids and biosolids 

ashes as sand (fine aggregate) replacement.  The selected percentages are:  10% 

biosolids ashes, and a combination of 2.5% biosolids + 7.5% sludge ashes. 

4.6.1 Compressive strength 

Table 29 shows the results obtained for the compressive strength of concrete specimens 

by:  

i. replacing sand with 10% sludge ashes (measured by weight of sand) 

ii. replacing sand with a combination of 2.5% dried biosolids and 7.5% sludge 

ashes (measured by weight of sand) 

Table 29 | Compressive strength of grade M20 concrete as a function of biosolids added as a 

sand replacement 

Test  
ID 

% weight of sand 
Concrete 

Grade 

Average compressive strength (MPa) 

Dried 
solids 

Biosolids 
ashes 

Age: 7 days Age: 28 days Age: 90 days 

M20-00A-REP 0% 0% M20 19.42 23.87 27.32 

M20-00A-REP 0% 10% M20 18.93 24.11 26.81 

M20-75A25B-REP 2.5% 7.5% M20 19.77 22.19 26.08 

 

Results from Table 29 and Figure 40 illustrate that there is no significant change in the 

relative strengths of the tested concrete blocks when sludge ashes is used in small 

quantities (i.e. 10%) as sand replacement in the concrete mixture. 
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Figure 40 | Relative strength of concrete as a function of sludge as sand repalcement 

Replacing sand with a mixture of 2.5% dry sludge and 7.5% sludge ashes, does not alter 

the relative compressive strength at day 7, but slightly reduces it on days 28 and 90.  

This reduction in the load bearing capacity can be attributed to the presence of organic 

matter in the dried sludge that was added to the concrete mixture. 

4.6.2 Slump 

Results in Table 30 show that there a slight but insignificant decrease in slump values 

when replacing sand with sludge ash and also when replacing sand with a combination 

of dry sludge and ashes. 

 

Table 30 | Slump values for sand replacement experimentation program 

Test  
ID 

% weight of sand Concrete Grade Slump (mm) 

Dried solids Biosolids ashes 
 

 

M20-00A-REP 0% 0% M20 7.2 

M20-00A-REP 0% 10% M20 6.8 

M20-75A25B-REP 2.5% 7.5% M20 7.0 
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4.6.3 Density and water absorption 

 

Table 33 and 32 show the average density and average water absorption values of 

sludge-amended bricks in which sludge was added in one specimen as 10% as dried 

biosolids and in another specimen as a combination of 2.5% dried biosolids and 7.5% 

sludge ashes.   

The densities of the produced blocks are not significantly affected when measured at the 

7, 28, and 90-day curing ages.  This is expected since the amounts of the sludge and 

sludge ashes added are small. 

Table 31 | Density results for sludge-amended concrete blocks  (sludge as sand replacement) 

Mix  
ID 

(% wt of sand) Average density (g/cm3) 

Dried solids Biosolids ashes 7 days 28 days 90 days 

M20-00A-REP 0% 0% 2.398 2.420 2.428 

M20-00A-REP 0% 10% 2.450 2.480 2.390 

M20-75A25B-REP 2.5% 7.5% 2.364 2.490 2.475 

 

Table 32 | Water absorption values for sludge-amended concrete blocks 

Mix  
ID 

(% wt of sand) 
Average water absorption @ a curing age of 28 days 

Dried solids Biosolids ashes 

M20-00A-REP 0% 0% 4.22% 
2.420 
2.428 

M20-00A-REP 0% 10% 5.80% 

M20-75A25B-REP 2.5% 7.5% 5.80% 

 

Water absorption values indicate a slight increase in the absorption capacity of the 

blocks that contain sludge and ashes.   

 

4.7 Evaluation of economic savings 

 

The rapid growth of the construction sector, population growth, and demographic 

changes (moving of people from rural areas into cities) have contributed to an increase 

in demand for building materials – particularly cement.  As a matter of fact, cement in the 

form of concrete is the most used building material on earth. The West Bank consumes 

about 2 million tons of cement annually (PECDAR, 2007).   

This section outlines the results of the economic savings in production costs that can be 

achieved by the manufactures of masonry bricks. 
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As reported by bricks factory owners, the most commonly used and sold brick in the 

West Bank is a masonry concrete unit of 40 cm x 20 cm x 10 cm.  Table 33 summarizes 

the average retail prices of CMUs of different sizes as reported by concrete business 

owners.  Prices were collected from personal visits and phone calls to factories across  

the West Bank.   

 

Table 33 | Average retail sale prices of concrete masonry units as reported by business owners 

CMU dimensions (cm) Average sales price range (NIS/CMU) 

40 x 20 x 10 1.5 
40 x 20 x 7 1.3 

40 x 20 x 15 2.3 
40 x 20 x 4 1.5 

40 x 22 x 17 2.6 
40 x 20 x 30 3.4 
50 x 20 x 6 3.2 

 

The cost analysis throughout this section is based on the most commonly produced 

brick.  The typical manufacturing cycle of the bricks is short, generally taking less than 2 

weeks – from the mixing of raw materials stage, all the way to the moist curing.  For 

existing businesses, the production costs of each brick entails labor, utilities (water and 

electricity), raw materials (cement, sand, crushed stone), machinery maintenance, and 

management expenses.  The transport costs of the bricks from the factory to the 

construction location are usually paid by the customer.  Bricks are not heat treated, and 

hence the most prominent single production expense is the cost of cement which is 

about 420 NIS/ton.   

Table 34 shows the breakdown of the production cost of 40 x 20 x 10 cm concrete 

masonry bricks for a typical factory with an average production rate of 6,000 CMUs per 

day.  From the results, each brick sale brings in a net profit of about 0.70 NIS. 
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Table 34 | Typical CMU production cost in the West Bank 

Average Operational Costs Unit 
Unit Cost 

NIS 
Total Cost 

NIS 

Labor Costs 5 Persons 2,000 10,000 
Electricity Lump sum 2,500 2,500 

Water Lump sum 1,500 1,500 
Machinery Lump sum 1,000 1,000 

Management expenses Lump sum 6,500 6,500 

Raw Materials Metric Tons 
Unit Cost 
NIS/ton 

Total Cost 
NIS 

Portland 250 (Origin: Israel) 96 420 40,320 
Sand (FA) 240 75 18,000 

Crushed stone (CA) 480 25 12,000 
Water

(1)
 --- --- --- 

Production rate
 (2)

 Brick 
Unit Cost 

NIS/CMU
(3)

 
 

Brick size: 40 x 20 x 10 cm 
Bearing capacity: 6 MPa

(4) 

C:FA:CA = 1.2:3:6 
Typical sale price: 1.50 NIS

(6)
 

120,000/month 0.765
(5)

  

(1) Price is included as part of the operational costs 

(2) Based on 5 day/week operation 

(3) Concrete masonry unit 

(4) Laboratory tested and exceeds ASTM specifications of 3.5 MPa 

(5) Calculation is based on data in table. 1 NIS = 0.278 USD 

(6) 14.5% VAT included.  Not including transportation to customer 

 

Table 35 shows that the reduced production costs can be attributed to the use of less 

quantity of raw materials.   

Table 35 | Comparative analysis of CMUs production cost with and without adding sludge(1) 

Sludge percentage  

0%  
No Sludge 
Addition 

10% ashes as 
mixture additive 

2.5% solids and 
7.5% ashes as 
partial sand 
replacement 

10% ashes as 
partial sand 
replacement 

Raw Materials   

Cement (NIS/10 CMUs) 3.36 3.32 3.35 3.36 
Sand (NIS/10 CMUs) 1.50 1.48 1.45 1.35 

Crushed stone (NIS/10 
CMUs) 

1.00 0.988 1.00 1.00 

Water (NIS/10 CMUs) --- `   

Operational Costs   

Labor costs 0.83 0.83 0.83 0.83 
Electricity 0.21 0.21 0.21 0.21 

Water 0.13 0.13 0.13 0.13 
Machinery 0.08 0.08 0.08 0.08 

Management Expenses 0.54 0.54 0.54 0.54 

Total NIS/10 CMUs 7.65 7.58 7.59 7.50 
Monthly Savings (NIS) -- 864 720 1,800 

(1) Factories are assumed to receive the sludge/ashes ready to be incorporated into cement mixture 
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When adding 10% sewage sludge ashes to the concrete mixture, the ashes are 

occupying and replacing a small volume of all the raw materials.  Assuming the each of 

the raw materials is being displaced by a quantity of biosolids that is equal to the ratio 

that the material is present in the mixture, then the cost savings would be around 864 

NIS per month.  The highest savings that can be achieved are when biosolids was 

incorporated in the concrete mixture as a partial replacement for sand.  In this case, the 

monthly cost savings were 1,800 NIS. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Introduction 

The most feasible management options for biosolids are those that accommodate 

local conditions and circumstances, provide maximum beneficial uses of the biosolids, 

and satisfy a wide range of success criteria including health and environmental risks, 

reliability, public support, and cost.  

New and emerging technologies are not changing the overall picture of biosolids 

management for local communities and municipalities in any new or significant way but 

are useful because they question all current sludge management assumptions and 

attempt to draw attention to the fact that biosolids can be used in one way or another and 

is not something that is being discarded anymore – it can be a valuable resource. 

In the wastewater treatment domain, researchers and engineers have long strived to 

design and optimize wastewater treatment technologies that are efficient in treating 

sewage but that generate as little sludge as possible as a byproduct.  However, if 

sewage sludge is to be considered as a marketable product, and given that this product 

will be in high demand, then, wastewater treatment plants should be engineered so as to 

increase and optimize their biosolids production. 

5.2 Conclusions 

 

Stabilized sewage sludge (biosolids) and sludge ashes cannot replace the cement 

constituent of a typical concrete mixture as neither of them contain the binding agents 

that are present in cement.  However, biosolids and sludge ashes can be added in 

limited quantities as additives or as sand replacement to a typical concrete mixture 

without having considerable negative effects on the structural integrity of the cured 

concrete.   

 

 Despite the fact that biosolids were sun-dried for 2 weeks, their high organic 

content negatively affected the early age and final compressive strength 

development of the cured concrete cubes.  The lowest negative effect was a 13% 
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compressive strength decrease when 10% dried sewage sludge was 

incorporated into the concrete mixture.  The maximum damaging effect occurred 

when adding 30% dried biosolids that resulted in a 40% decrease in the load 

bearing capacity of concrete. 

 

 The addition of incinerated sewage sludge ashes to the raw material concrete 

mixture in small quantities (i.e. no more than 10%) had no significant negative 

effect on the compressive strengths of the cured blocks recorded on the 7th and 

28th days of the curing age.  The compressive strength at day 90 showed a 4% 

decrease. 

 

 Working with concrete paste mixtures of acceptable workability is critical to the 

efficiency of the bricks production process.  Mixtures of low slump values can 

cause frequent machine clogging while those of high slump values can affect 

compaction and molding of the concrete blocks.  Incorporating sun-dried 

biosolids in large quantities (i.e. 30%) into the concrete mixture paste resulted in 

water-reducing effects and hence decreased slump values.  On the other hand, 

slump values of concrete pastes having sewage sludge and sludge ashes in 

quantities of up to 10% are not significantly affected and are well within the 

acceptable range of typical concrete mixes. 

 

 Low water absorption capacity is one of the most important properties of good 

quality of concrete bricks.  With the exception of concrete blocks containing 30% 

dried sewage sludge, the water absorption capacities of were below the 

maximum limit specified by ASTM C90. 

 

 As long as it meets the desired strength criteria, low-density concrete is desirable 

in many construction applications.  The density of the cured concrete blocks 

decreased with the increase of the quantity of biosolids and ashes that were 

incorporated into the blocks which can be attributed to the increase in porosity of 

the cured concrete. 

 

 When dried sludge and sludge ashes are used in small quantities to replace sand 

in the concrete mixture, there was no significant negative effect on the workability 

of the concrete paste and on the compressive strength development, water 

absorption, and density of the cured blocks. 
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 The most economic option for producing bricks that are amended with biosolids, 

is to use incinerated sewage sludge ashes as a partial replacement for the sand 

in the raw material mix-design.  Using 10% sewage sludge ashes as a partial 

sand replacement can cut raw material cost by up to 15%. 

 

5.3 Recommendations 

 

 The hydration chemistry of sewage sludge and sewage sludge ashes should be 

investigated and compared to the pozzolanic reactions of cementitious products 

such as cement so as to better understand if ashes could be used to augment the 

strength development of concrete. 

 

 There is a need for an enlightened government policy to drive supply and 

demand for cleaner production and green technologies.  Lower taxes, tax credits, 

and subsidies could be possible key drivers that may be used to stimulate the 

marketplace and create a wide customer base to absorb greener production 

technologies and to drive the innovative use of bio-solids in the construction 

industry further. 

 

 There is a need for the development of local rules defining bio-solids quality, 

classification, and disposal.  Palestinian regulatory authorities can capitalize on 

the regulations developed in the United States based on performance standards 

of the two classes of pathogen reduction (United States Federal Register, 1993). 

5.4 Lessons learned 

 

 Many of the ASTM specifications that regulate concrete production explicitly do 

not allow the use of new materials in the production of concrete.  As an example, 

ASTM C-331 specifies that lightweight masonry concrete units (CMUs) shall use 

lightweight aggregates of expanded clay, expanded shale, volcanic cinders, 

pumice, or a combination thereof.  In other words, ashes cannot be used as 

lightweight aggregates in the manufacture CMUs. 

 

 Recognizing the existence of a biosolids’ disposal challenge is only halfway to 

winning the bisolids management battle.  Getting the whole ecosystem to 

respond – from local councils to cities to regulating authorities and from the public 

sector to the private sector – is another matter.  Therefore, in addition to finding 



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 74 
 

feasible technologies, mitigating the hazards posed by the ever increase in bio-

solids production rates, requires a combination of both social and political 

willpower. 

 

 The technology of producing building bricks with bio-solids as a partial or full raw 

material substitute has reached the piloting and developmental stages overseas 

and has even been successfully demonstrated at a full-scale level in Japan.  

However, the technology is still in the embryonic and bench-scale levels in the 

Europe, USA, and the Middle East. 

 

 For cost-cutting purposes, a few concrete production facilities in the West Bank 

are not using sand in their concrete mixture.  Instead, they are utilizing finely-

crushed limestone (passing a 6 mm sieve) as a sand replacement.  In this case, 

the cost savings is only applicable when using sludge as an additive and not as a 

sand replacement. 

 

 The production of excellent quality bio-solids at reduced prices – that is suitable 

to be recycled and re-used, requires innovative and case-specific solutions that 

go beyond the wastewater treatment plant but also addresses the quality of 

domestic, commercial, and industrial discharges into the municipal sewers. 

 

 

 

  



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 75 
 

BIBLIOGRAPHY 
 

(UN-Habitat), United Nations Human Settlements Programme. (2008). Global Atlas of Excreta, 

Wastewater Sludge, and Biosolids Management: Moving forward the sustaibable and welcome 

uses of a global resource. Nairobi: Greater Moncton Sewerage Commission. 

Alleman, J., & Berman, N. (1984). Constructive sludge management: Biobrick. Journal of 

Environmental Engineering , 110 (2), 301-311. 

Alleman, J., Bryan, E., & Stumm, T. (1990). Sludge-amended brick production: Applicability for 

metal-laden residues. Water Science and Technology , 22 (12), 309-317. 

Al-Sa'ed, R. (2007). Pathogens Assessment in Reclaimed Effluent Used for Industrial Crops. 4 (1), 

68-75. 

Asano, T. (2007). Water Reuse Issues, Technologies, and Applications. New York: McGraw-Hill 

Professional. 

ASTM 127. (2007). Standard Test Method for Density, Relative Density (Specific Gravity), and 

Absorption of Coarse Aggregate. American Standards for Testing and Materials. 

ASTM 128. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption 

of Fine Aggregate. American Standard Testing and Materials. 

ASTM C 566. (2004). Standard Test Method for Total Evaporable Moisture Content of Aggregate 

by Drying. American Standards for Testing and Materials. 

ASTM C136. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. American 

Standards for Materials and Testing. 

ASTM C140. Standard Test Methods for Sampling and Testing Concrete Masonry Units and 

Related Units. American Standards for Testing and Materials. 

ASTM C143. (2004). Standard Test Method for Slump of Hydraulic-Cement Concrete. American 

Standards for Testing and Materials. 

ASTM C150. (2009). Standard Specification for Portland Cement. American Standards for Testing 

and Materials. 

ASTM C33. Standard Specification for Concrete Aggregates. American Standards for Materials 

and Testing. 

ASTM C90. Standard Specification for Loadbearing Concrete Masonry Units. American Standards 

for Materials and Testing. 

ASTM C94. Standard Specification for Ready-Mix Concrete. American Standards for Testing and 

Materials. 



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 76 
 

Auerbach, E., Seyfried, E., & McMahon, K. (2007). Tetracycline resistance genes in activated 

sludge wastewater treatment plants. Water Research , 41, 1143-1151. 

Beecher, N., Hébert, M., Ham, M. V., & Teshima, M. (October, 2007). Water Environment 

Association of Ontario Biosolids Seminar. 

Brooks, J., Rusin, P., Maxwell, S., Rensing, C., Gerba, C., & Pepper, I. (2007). Occurence of 

antibiotic-resistant bacteria and edotoxin associated with the land-application of biosolids. 

Canadian Journal of Microbiology , 53, 616-622. 

Cheesman, C. R., & Virdi, G. (2005). Properties and microstructure of lightweight aggregate 

produced from sintered sewage sludge ash. Resources, Conservation and Recycling , 45, 18-30. 

Creative Publishing International, Inc. (2010). The Complete Guide to Masonry and Stonework 

(3rd Edition ed.). (J. Gehlhar, Ed.) Minneapolis, Minnesota: Creative Publishing International, Inc. 

Deo, R. P., & Halden, R. U. (2010). In silico screening for unmonitored, potentially problematic 

high production volume (HPV) chemicals prone to sequestration in biosolids. Journal of 

Environmental Monitoring , 12 (2). 

European Commission DG Environment. (October 2001). Disposal and recycling routes for 

sewage sludge. Luxembourg: Office for Official Publications of the European Communities. 

European Commission DG Environment. (2002). Disposal and recycling routes for sewage sludge: 

Economic sub-component report. (pp. 17-19). Luxembourg: Office for Official Publications of the 

European Communities. 

European Parliament. (2008). DIRECTIVE 2008/98/EC OF. Official Journal of the European Union , 

Article 8. 

G. De Schutter, K. A. (2004). Evaluation of water absorption of concrete as a measure for 

resistance against carbonation and chloride migration. Materials and Structures , 37, 591-596. 

Goldberg, M. S., Seimiatyck, J., DeWar, R., Desy, M., & Riberdy, H. (1999). Risks of Developing 

Cancer Relative to Living Near a Municipal Solid Waste Landfill in Montreal, Quebec, Canada. 

Archives of Environmental Health , 54 (4), 291-296. 

Haynes, R. J., Murtaza, G., & Naidu, R. (2009). Inorganic and organic constituents and 

contaminants of biosolids: implications for land application. Advances in Agronomy , 104, 165-

267. 

IS 10262:2009. (2009). Indian Standard Concrete Mix Proportioning - Guidelines (First Revision). 

New Delhi, India: Bureau of India Standard. 

Jeremey, H. (1999, November). Ecological and economical balance for sludge management 

options. Proceedings of the workshop on "Problems around sludge" , 18-19. 

Kaosol, T. (2010). Reuse water treatment sludge for hollow concrete block manufacture. Energy 

Research Journal , 1 (2), 131-134. 



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 77 
 

Kato, H., & Takesue, M. (1984). Manufacture of artificial fine lightweight aggregate from sewage 

sludge by multi-stage stream kiln. International Conference of Recycling , 459. 

Khanbilvardi, R., & Afshari, S. (1995). Sludge ash as fine aggregate for concrete mix. Journal of 

Environmental Engineering Div. ASCE , 121 (9), 633-638. 

Kinney, C. A., Furlong, E. T., Kolpin, D. W., Burkhardt, M. R., Zaugg, S. D., Werner, S. L., et al. 

(2008). Bioaccumulation of Pharmaceuticals and Other Anthropogenic Waste Indicators in 

Earthworms from Agricultural Soil Amended With Biosolid or Swine Manure. Environmental 

Science and Technology , 42 (6), 1863–1870. 

Kosmatka, S. H., Kerkhoff, B., & Panarese, W. C. (2008). Design and Control of Concrete Mixtures. 

Portland Cement Association. 

Lehr, J. H., & Keeley, J. (2005). Water Encyclopedia: Domestic, Municipal, and Industrial Water 

Supply and Waste Disposal. Hoboken, New Jersey: John Wiley & Sons, Inc. 

Liew, A. G., Idris Azni, W., Clavin, H. K., Samad, A. A., Megat Johari, M., & Bako, M. A. (2004). 

Incorporation of sewage sludge in clay brick and its characterization. Waste Management 

Research , 22 (4), 226-233. 

Lin, T., Chu, J., & Goi, M. (2006). Effects of cement on redistribution of trace metals and 

dissolution of organics in sewage sludge and its organic waste-amended products. Waste 

Management , 26 (11), 1294-1304. 

Mahzuz, H. M., Alam, R., Alam, M. N., Basak, R., & Islam, M. S. (2009). Use of arsenic 

contaminated sludge in making ornamental bricks. International Journal of Environmental 

Science and Technology , 6 (2), 291-198. 

Malliou, O., Katsioti, M., Georgiadis, A., & Katsiri, A. (2009). Properties of stabilized/solidified 

admixtures of cement and sewage sludge. Cement and Concrete Composites , 29, 55-61. 

Metcalf, E., Tchobanoglous, G., & Burton, F. (1991). Wastewater engineering: treatment, 

disposal, and re-use (3rd ed.). New York, New York: McGraw Hill Inc. 

Montgomery, D., Sollars, C., & Perry, R. (1988). Cement-based solidification for the safe disposal 

of heavy metal contaminated sewage sludge. Waste Management and Research , 6, 217-226. 

Monzo, J., Paya, J., Borrachero, M. V., Morenilla, J. J., Bonilla, M., & Calderón, P. (2004). Some 

strategies for reusing residues from waste water treatment plants: Preperation of building 

materials. Proceedings of the International RILEM Conference on the Use of Recycled Materials in 

Building and Structures (pp. 814-823). Valencia, Spain: RILEM Publications. 

Munir, M., Wong, C., & Xagoraraki, I. (2010). Release of antibiotic resistant bacteria and genes in 

the effluent and biosolids of five wastewater utilities in Michigan. Waster Research , 

doi:10.1016/j.watres.2010.08.033. 



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 78 
 

Okuno, N., & Takahashi, S. (1997). Full scale application for manufacturing bricks from sewage. 

Water Science and Technology , 36 (11), 243-250. 

Palestinian Standards Institution. (2008, 1 6). Blocks - Concrete blocks for walls. PS 6-1-2008. 

Retrieved from http://www.psi.gov.ps/LibraryItems.aspx?id=6 

Pinarli, V., & Emre, K. (1994). Constructive sludge management – reutilization of municipal 

sewage sludge in Portland cement mortars. Environmental Technology , 15 (9), 833-841. 

Rantanem, K., & Domb, E. (2008). Simplified TRIZ: New Problem Solving Applications for 

Engineers and Manufacturing Professionals (Second Edition ed.). New York: Auerbach 

Publications. 

Sidhu, J., & Toze, S. (2009). Human pathogens and their indicators in biosolids. Environment 

International , 35 (1), 187-201. 

Slim, J., & Wakefield, R. (1991). The utilization of sewage sludge in the manufacture of clay 

bricks. Water South African Journal , 17, 197-202. 

Spinosa, L., & Veslind, P. (2001). Sludge into biosolids: processing, disposal, utilization. London, 

UK: IWA Publisher. 

Tay, J. (1987). Bricks manufactured from sludge. Journal of Environmental Engineering , 113 (2), 

278-283. 

Trauner, E. (1993). Sludge ash bricks fired to above and below ash-vitrifying temperature. 

Journal of Environmental Engineering , 119 (3), 506-519. 

United States Federal Register. (1993). 40 Code of Federal Register Part 503: Pollutant 

concentration limits for exceptional quality biosolids. 

United States Federal Register. (1993). 40 Code of Federal Register Part 503: Standards for the 

use and disporal of sewage sludge. 58, 9248-9404. 

Wang, H., Brown, S. L., Magesan, G. N., Slade, A. H., Quintern, M., Clinton, P. W., et al. (2008). 

Technological options for the management of biosolids. Environmental Science and Pollution 

Research , 15, 308-317. 

Wang, L., Shammas, N., & Hung, Y.-T. (Eds.). (2008). Handbook of Environmental Engineering: 

Biosolids Engineering and Management. Totowa, NJ: Humana Press. 

Weng, C.-H., Lin, D.-F., & Chiang, P.-C. (2003). Utilization of sludge as brick material. Advances in 

Environmental Research , 7 (3), 678-685. 

Wiebusch, B. S. (1997). Utilization of sewage sludge ashes in the brick and the tile industry. 

Water Science and Technology , 36 (11), 251-258. 

World Commission on Environment and Development (WCED). (1987). Our common future. 

Oxford: Oxford University Press. 



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 79 
 

Yagüe, A., Valls, S., Vázquez, E., & Albareda, F. (2003). Durability of concrete with addition of dry 

sludge from waste water treatment plants. Cement and Concrete Research , 1064-1073. 

YAGÜE, A., VALLS, S., VAZQUEZ, E., & KUCHINOW, V. (2002). Use of dry sludge from waste water 

treatment plants as an additive. Construc. Mater. , 52, 31-41. 

Yip, W., & Tay, J. (1990). Aggregate made from incinerated sludge residue. Journal of Materials 

in Civil Engineering , 2 (2), 84-93. 

 

  



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 80 
 

APPENDICES 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 81 
 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix I 

Concrete Mix Design Procedure 

Sample Calculation 

(IS 10262:2009 Method) 
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Concrete Mix Design Procedure (IS 10262:2009 method) 

Control Sample Calculation: 

A well proportioned concrete mix should posses the acceptable workability of freshly mixed 

concrete paste; durability, strength, uniform appearance of hardened concrete; and economy. 

The procedure of mix design determines the unit proportions (volume and weight) of concrete 

mix constituents (cement, aggregates, and water) of a pre-defined concrete grade.  Following 

are the specifications that are to be used as per field data obtained from concrete makers in 

Palestine: 

Concrete grade M20 
Cement Type Type I all-purpose cement (Sp. Gravity: 3.2) 
Minimum cementing material content  320 kg/m3 (for durability purposes) 
Maximum water to cement ratio (w/c) 0.70 
Maximum nominal size of aggregates 20.0 mm 
Aggregate type Crushed (angular) 
Slump (workability) 75 m 
  

I. Target Mean Strength (TMS) for mix proportioning 

 

In order to calculate the mix proportions of M20 grade concrete, the target mean strength has 

to be calculated. 

The first step was to choose a required concrete strength 

Ft = Fcs + k · s 

where  

Ft target mean strength 

Fcs characteristic strength (design strength) @ a curing age of 28 days 

k appropriate value to the defect percentage permitted below the characteristic strength 

s standard deviation of the particular mix 

Table 36 | Concrete grade designation according to its characteristic compressive 
strength 

Grade designation Specified characteristic 
compressive strength (MPa) 

@ a curing age of 28 days 

Standard deviation, s 
N/mm2 

M10 10 3.0 

M15 15 3.5 

M20 20 4.0 

M25 25 4.0 

M30 30 5.0 

M35 35 5.0 

M40 40 5.0 
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M45 45 5.0 

M50 50 --- 

M55 55 --- 

M60 60 --- 

 

Table 37 | Relationship between to cementitious material ratio and compressive 
strength of concrete 

Compressive strength 
Moist-cured concrete @ 28 

days, MPa 

Water-cementitious materials ratio by mass (w/c) 

Non-air-entrained concrete Air-entrained concrete 

45 0.38 0.30 

40 0.42 0.34 

35 0.47 0.39 

30 0.54 0.45 

25 0.61 0.52 

20 0.69 0.60 

15 0.79 0.70 
Relationship assumes nominal maximum size aggregate of 19-25 mm 

From Table 38, the statistical constant k is determined to be 1.65 at 5% defect percentage.  

Table 38 | Statistical constant k as a function of permitted defect percentage permitted 
Percentage of result 
below the characteristic 
strength 

20% 10% 5% 2.5% 1.0% 

k 0.84 1.28 1.65 1.96 2.33 

 

Using the standard deviation (Table 36) for concrete of grade M20, then:Ft = 25 + 1.65 x  4.0 = 

31.6 N/mm2 

II. Water-Cement Ratio (W/C) 

Using Table 37, a water to cement ratio of 0.52 is selected  

[Constraint check: 0.52 < 0.70 hence it is okay].   

Using Table 39 and Figure 41, the estimated mixing water quantity = 202 liters/m3 (for 75 mm – 

100 mm slump range and 20 mm aggregate size) 

Table 39 | Estimated water mixing requirements and air content requirements for 
different slumps and aggregate sizes 
 Aggregate size (mm) 

 9.5 12.5 19 25 37.5 50 75 100 

Non-air-entrained  

Slump (mm) Mixing water quantity (Kg/m
3
) 

25-50 207 199 190 179 166 154 130 113 

75-100 228 216 205 193 181 169 145 124 

150-175 243 228 216 202 190 178 160 --- 

Typical entrapped 
air (percent) 

3 2.5 2 1.5 1 0.5 0.3 0.2 

Air-entrained 
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Slump (mm) Mixing water quantity (Kg/m
3
) 

25-50 181 175 168 160 148 142 122 107 

75-100 202 193 184 175 165 157 133 119 

150-175 216 205 197 184 174 166 154 --- 

Recommended air content (percent) 

Mild Exposure 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 

Moderate Exposure 6.0 5.5 5.0 4.5 4.5 4.0 3.5 3.0 

Severe Exposure 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 

         

 

 

1. Cement content calculation 

Water-cement ratio (w/c) = 0.52 

Therefore, cement content = 201 liters/m3/0.52 

= 386.54 kg/m3 

[Constraint check: 386.54 kg/m3 > 320 kg/m3, hence ok] 

III. Aggregate content calculations 

Aggregate grading (particle size and distribution) have an important influence on concrete 

proportioning mixture because they affect the workability of fresh concrete.  Further, grading is 

critical for creating an economical mixture because it directly affects the amount and volume of 

concrete that can be made with a given amount of cement (Kosmatka, Kerkhoff, & Panarese, 

2008). 

Based on empirical data, the American Concrete Institute recommends that the percentage (by 

unit volume) of coarse aggregate to be based on the nominal maximum aggregate size and fine 

aggregate fineness modulus.  An increase in recommended values by 10% is allowed for 

pavement concrete. 

 

Figure 41 | Estimated water requirement for various slumps and crushed aggregate sizes 
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Table 40 | Estimated volume of coarse aggregate (per unit volume of PCC) for different 
fine aggregate fineness moduli and different nominal maximum aggregate sizes 

Nominal maximum (coarse) aggregate size Fine aggregate fineness modulus 

 2.40 2.60 2.80 3.00 

9.5 mm 0.50 0.48 0.46 0.44 

12.5 mm 0.59 0.57 0.55 0.53 

19 mm 0.66 0.64 0.62 0.60 

25 mm 0.71 0.69 0.67 0.65 

37.5 mm 0.75 0.73 0.71 0.69 

50 mm 0.78 0.76 0.74 0.72 

 

Using Table 40, the volume of coarse aggregate corresponding to a 20 mm size aggregate is 0.66 

for every unit volume of PCC. 

In order to determine the fineness modulus of fine aggregates, a weighed sample of oven-dried 

fine aggregate is separated through a series of sieves of progressively smaller openings.  The 

standard test method ASTM C136 was used in the laboratory for sieve analysis to determine the 

particle size distribution of fine aggregates (i.e. sand), and are shown in Table 41.  The fine 

aggregate used in this work meets the ASTM C33 specifications as can be seen in Figure 42 

below. 

Generally, the fineness modulus of sand varies from 2.0 to 4.0.  The higher the FM, the coarser 

the sand is: 

Sand Type Fineness Modulus (FM) 
Fine 2.0 to 2.8 
Medium 2.8 to 3.2 
Coarse 3.2 to 4.0 
 

In this study, the fine aggregate is a combination of sand and crushed stone.  Their combined 

sieve analysis is shown in Table 41. 

Table 41 | Laboratory sieve analysis of fine aggregate with maximum size of 2.36 mm 

Opening size 
 

Cumulative 
weight of sand 
retained 

Cumulative 
percentage of 
sand retained 

Percentage of 
fine 
aggregates 
passing 

Percentage of 
fine 
aggregates 
retained 

ASTM C33 
Requirement (passing) 

Low High 

(mm) (g) % % % % % 

9.5 0.0 0.0 100 0.0 100 100 

4.75 0.0 0.0 100 0.0 95 100 

2.36 37.0 7.4 92.6 7.4 80 100 

1.18 142.5 35.9 71.5 28.5 50 85 

0.6 201.5 76.2 59.7 40.3 25 60 

0.3 354.0 147.0 29.2 70.8 10 30 
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0.15 474.5 241.0 5.1 94.9 2 10 

<0.15 499.0 --- 0.2 99.8 --- --- 
Fineness Modulus 2.42 

Dry weight of original sample is 500.0 g.  Sample was oven-dried at 110  5 °C 

The F.M. = {(Cumulative % retained on #4, 8, 16, 30, 50, 100 sieves)/100} 

F.M.of fine aggregate = (0+7.4+28.5+40.3+70.8+94.9)/100 = 2.42 

 

Figure 42 | Graphical representation of the laboratory sieve analysis of fine aggregate using 

ASTM C136 

Figure 42 indicates that the sieve analysis carried out in the testing laboratory is in compliance 

with the minimum and maximum ranges as specified by ASTM C136. 

IV. Weight proportion calculations 

Volume of concrete cube = 1 m3 

Volume of cement = mass/sp. gravity = 386.54 kg/m3/3.2/1000 = 0.121 m3 

Volume of mixing water = 202 Kg/m3/1/1000 = 0.202 m3 

Volume of coarse aggregates + fine aggregates = 1 – (0.121 + 0.202) = 0.677 m3 

Volume of coarse aggregates = 0.677 m3 x 0.66 = 0.447 m3 

Mass of coarse aggregates = volume x sp. gravity = 0.447 x 2.68 x 1000 = 1197.4 Kg/m3 

Volume of fine aggregates = 0.677 m3 x 0.34 = 0.230 m3 
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Mass of fine aggregates = 0.230 m3 x 2.65 x 1000 = 610.0 Kg/m3 

 

Resultant mix proportions for Mix 1 for every standard-size 10 mm x 10 mm x 10 mm concrete 

cube : 

Cement = 386.54 g 
Fine aggregate = 610.0 g 
Coarse aggregate = 1197.4 g 
Water =  202 ml 
Water/Cement Ratio = 0.52 
C:FA:CA ratio ≈ 1:1.5:3 
Total mix weight = 2395.94 g 
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Appendix II 

Estimation of Biosolids production in Palestine 

(Based on BOD laboratory tests and influent rates obtained from Al-Bireh Municipality) 
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The bio-solids production rate in Palestine can be calculated based on an estimate of observed 

solids yield data from similar facilities combined with data collected at a major wastewater 

treatment plant as shown in equation below (Asano, 2007) and the figure below.   

The observed yield decreases as the solids retention time (SRT) is increased because of the 

resultant biomass loss due to increased indigenous respiration especially at higher 

temperatures.   

PX,VSS = Yobs(Q)(So – S)(1 Kg/103 g) Equation (1)  

 

PX,VSS  = net waste activated sludge produced per day, Kg VSS/d 

Yobs  = observed yield, g VSS/g substrate removed 

Q  = influent flow, m3/d 

So  = influent substrate concentration, g/m3 (mg/L) 

S  = effluent substrate concentration, g/m3 (mg/L) 

Assumptions: 

Population:     4,043,218 

Population growth:    2.25% 

SRT:      10 days 

Temperature:     20 °C 

Average daily inflow:    5000 m3/d 

Average influent substrate concentration: 440 mg/L 

Average outflow substrate concentration: 10 mg/L 

The observed volatile suspended solids (VSS) yield value based on BOD is determined from the 

figure below which is 0.65 Kg VSS/Kg BOD 

 

 

 

 

 

 

 

 

 

 
Figure 43 | Net solids production versus solids retention time (SRT) and temperature: (a) with 

primary treatment and (b) without primary treatment (Asano, 2007) 
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Therefore, 

(0.55 Kg VSS/Kg BOD) x (5000 m3/day) x (440 – 10 mg/L) ≈ 1200 Kg/day 
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Appendix III 

Compressive strength sample calculation 

 

(Based on standard cubes of 10 x 10 x 10 cm and a constant loading rate of 0.63 MPa/s) 
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Control specimen (M20SD00):  

Number of cubes: 3 

Curing age:  7 days 

Biosolids percentage: 0% 

Size of the each cube: 10 cm x 10 cm x 10 cm 

Area of the specimen:  100 cm2 

Load for M20SD00-1:  199.4 Kg/cm2 = 19.55 MPa = 2835 psi 

Load for M20SD00-2:  195.9 Kg/cm2 = 19.21 MPa = 2786 psi 

Load for M20SD00-3:  198.8 Kg/cm2 = 19.50 MPa = 2828 psi 

Average:  (3593 + 3622 + 3604)/3 = 3606 psi 

Cube # Curing age Characteristic compressive strength 
(MPa) 

M20SD00 -1 7 19.55 

M20SD00 -2 7 19.21 

M20SD00 -3 7 19.50 

Average 19.42 

 

{Constraint check: if any of the cubes deviates more than 10% of the average (i.e. 2816 psi)] 

Calculate 10% of 2816 = 282 psi 

 

Cube M20SD00-1: 2835 - 2816  = 19 psi < 282 therefore ok. 

Cube M20SD00-2: 2816 – 2786 = 30 psi < 282 therefore ok. 

Cube M20SD00-3: 2828 – 2816 = 12 psi < 282 therefore ok. 

Average compressive strength @ 7 days of curing age: 2816 psi = 19.42 MPa 
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Appendix IV 

Control Samples Detailed Results 
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CONTROL SAMPLES 

Mix design proportions: 

 

Compressive strength & density: 

7-day curing age 

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M20-1 10 x 10 cm = 100 cm2 0.63 2835 19.55 2.409 

M20-2 10 x 10 cm = 100 cm2 0.63 2786 19.21 2.389 

M20-3 10 x 10 cm = 100 cm2 0.63 2828 19.50 2.396 

Average 2816 19.42 2.398 

  

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M25-1 10 x 10 cm = 100 cm2 0.63 3616 24.93 2.418 

M25-2 10 x 10 cm = 100 cm2 0.63 3577 24.66 2.390 

M25-3 10 x 10 cm = 100 cm2 0.63 3629 25.02 2.419 

Average 3607 24.87 2.409 

  

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M30-1 10 x 10 cm = 100 cm2 0.63 4203 28.98 2.429 

M30-2 10 x 10 cm = 100 cm2 0.63 4184 28.85 2.415 

M30-3 10 x 10 cm = 100 cm2 0.63 4195 28.93 2.419 

Average 4194 28.92 2.421 

 

28-day curing age 

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M20-1 10 x 10 cm = 100 cm2 0.63 3477 23.97 2.430 

M20-2 10 x 10 cm = 100 cm2 0.63 3451 23.79 2.425 

M20-3 10 x 10 cm = 100 cm2 0.63 3458 23.84 2.405 

Grade 
Weight of mix components (g) Total 

Weight 
(g) 

Ratios 

Water Cement 
Coarse 

Aggregate 
Fine 

Aggregate 
w/c C:FA:CA 

M20 201 386.5 1199.6 611.1 2398.2 0.52 1:1.6:3.1 

M25 201 446.7 1166.3 594.1 2408.2 0.45 1:1.3:2.6 

M30 201 515.4 1128.4 574.8 2419.6 0.39 1:1:2 

Grade 
Weight of mix components (g) Total 

Weight 
(g) 

Ratios 

Water Cement 
Coarse 

Aggregate 
Fine 

Aggregate 
w/c C:FA:CA 

M20 201 386.5 1199.6 611.1 2398.2 0.52 1:1.6:3.1 

M25 201 446.7 1166.3 594.1 2408.2 0.45 1:1.3:2.6 

M30 201 515.4 1128.4 574.8 2419.6 0.39 1:1:2 

Grade 
Weight of mix components (g) Total 

Weight 
(g) 

Ratios 

Water Cement 
Coarse 

Aggregate 
Fine 

Aggregate 
w/c C:FA:CA 

M20 201 386.5 1199.6 611.1 2398.2 0.52 1:1.6:3.1 

M25 201 446.7 1166.3 594.1 2408.2 0.45 1:1.3:2.6 

M30 201 515.4 1128.4 574.8 2419.6 0.39 1:1:2 
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Average 3462 23.87 2.420 

  

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M25-1 10 x 10 cm = 100 cm2 0.63 4473 30.84 2.410 

M25-2 10 x 10 cm = 100 cm2 0.63 4461 30.76 2.399 

M25-3 10 x 10 cm = 100 cm2 0.63 4452 30.70 2.385 

Average 4462 30.77 2.398 

  

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M30-1 10 x 10 cm = 100 cm2 0.63 5603 38.63 2.415 

M30-2 10 x 10 cm = 100 cm2 0.63 5624 38,78 2.419 

M30-3 10 x 10 cm = 100 cm2 0.63 5630 38.82 2.381 

Average 5619 38.74 2.405 

 

90-day curing age 

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M20-1 10 x 10 cm = 100 cm2 0.63 3977 27.42 2.408 

M20-2 10 x 10 cm = 100 cm2 0.63 3969 27.37 2.411 

M20-3 10 x 10 cm = 100 cm2 0.63 3940 27.17 2.465 

Average 3962 27.32 2.428 

  

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M25-1 10 x 10 cm = 100 cm2 0.63 5602 38.62 2.406 

M25-2 10 x 10 cm = 100 cm2 0.63 5587 38.52 2.428 

M25-3 10 x 10 cm = 100 cm2 0.63 5593 38.56 2.432 

Average 5594 38.57 2.422 

  

Grade-
Sample# 

Axial Area Loading 
rate 

(MPa/s) 

Compressive Strength Density 
(g/cm3) psi MPa 

M30-1 10 x 10 cm = 100 cm2 0.63 6570 45.30 2.422 

M30-2 10 x 10 cm = 100 cm2 0.63 6599 45.50 2.440 

M30-3 10 x 10 cm = 100 cm2 0.63 6586 45.41 2.431 

Average 6585 45.40 2.431 
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Workability of the concrete mix: 

Grade Sample # Workability (mm) 

M20-1 73 

M20-2 71 

M20-3 72 

Average 72 

  

M25-1 69 

M25-2 70 

M25-3 71 

Average 70 

  

M30-1 70 

M30-2 71 

M30-3 69 

Average 70 

 

Water absorption @ 28 days of curing age: 

Grade Sample # Dry Weight 
(g) 

Wet Weight 
(g) 

Weight 
Increase (g) 

Absorption 
Percentage 

(%) 

M20-1 2430 2537 107 4.40 

M20-2 2425 2530 105 4.32 

M20-3 2405 2507 102 4.24 

Average 4.32 

Grade Sample # Dry Weight 
(g) 

Wet Weight 
(g) 

Weight 
Increase (g) 

Absorption 
Percentage 

(%) 

M25-1 2410 2523 113 4.70 

M25-2 2399 2511 112 4.65 

M25-3 2398 2516 118 4.90 

Average 4.75 

Grade Sample # Dry Weight 
(g) 

Wet Weight 
(g) 

Weight 
Increase (g) 

Absorption 
Percentage 

(%) 

M30-1 2415 2526 111 4.60 

M30-2 2425 2534 109 4.50 

M30-3 2381 2486 105 4.40 

Average 4.50 
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Appendix V 

Survey Questions to Establish Economic Study 
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 الإسمنتي الطوب مصانع حول استبيان – بيرزيت جامعة

 

 .(/الأسبوع/الشهراليوم في المنتج بوالط عدد) للمصنع الإنتاجة القدرة -0

 

 

 

ال وفنيين(. المصنع في العاملين عدد -0  )عم 

 

 .الواحد /الفنيللعامل الشهري/اليومي الراتب متوسط -3

 

 

ل -4  .للمصنع الشهرية الكهرباء فاتورة قيمة معد 

 

 مع تحديد النوعية/المصدر. الواحد للطن الإسمنت شراء سعر -2

 

 .الواحد للطن الحصمة شراء سعر -6

 

 

 .الواحد للطن الرمل شراء سعر -5

 

 الضغط تحمل قوة –( ارتفاع – عرض– طول) مبيعاً  الأكثر الطوب ومواصفات نوع -2

 

 

 (الطوب متر أو) الواحدة للطوبة المبيع سعر -0

 

 

 

 



Technical and Economic Feasibility of Biosolids-Amended Bricks Production 99 
 

ل قيمة فاتورة الماء في الشهر الواحد. -01  معد 

 

 

 طن اسمنت مع تحديد أبعاد الطوبة. 0كمية الطوب المنتج من كل  -00

 

 نسب المواد الأولية المستخدمة في صنعاة الطوب. -00

 

 


